×

A projected subgradient method for solving generalized mixed variational inequalities. (English) Zbl 1154.58307

Summary: We consider the projected subgradient method for solving generalized mixed variational inequalities. In each step, we choose an \(\varepsilon _k\)-subgradient \(u^k\) of the function \(f\) and \(w^k\) in a set-valued mapping \(T\), followed by an orthogonal projection onto the feasible set. We prove that the sequence is weakly convergent.

MSC:

58E35 Variational inequalities (global problems) in infinite-dimensional spaces
49J40 Variational inequalities
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubin, J. P.; Ekeland, I., Applied Nonlinear Analysis (1984), Wiley: Wiley Now York · Zbl 0641.47066
[2] Alber, Y. I.; Iusem, A. N.; Solodov, M. V., On the projected subgradient method for nonsmooth convex optimization in a Hilbert space, Math. Program., 81, 23-35 (1998) · Zbl 0919.90122
[3] Bruck, R. D., An iterative solution of a variational inequality for certain monotone operators in Hilbert space, Bull. Amer. Math. Soc., 81, 890-892 (1975) · Zbl 0332.49005
[4] Cohen, G., Auxiliary problem principle extended to variational inequalities, J. Optim. Theory Appl., 49, 325-333 (1988) · Zbl 0628.90066
[5] Cohen, G., Nash equilibria: Gradient and decomposition algorithms, Large Scale Systems, 12, 173-184 (1987) · Zbl 0654.90103
[6] Ekeland, I.; Temam, R., Convex Analysis and Variational Inequalities (1976), North-Holland: North-Holland Amsterdam · Zbl 0322.90046
[7] Ermoliev, Y. M., On the method of generalized stochastic gradients and quasi-Fejér sequences, Cybernetics, 5, 208-220 (1969)
[8] Facchinei, F.; Pang, J. S., Finite Dimensional Variational Inequalities and Complementarity Problems (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1062.90002
[9] Iusem, A. N., On some properties of paramonotone operators, J. Convex Anal., 5, 269-278 (1998) · Zbl 0914.90216
[10] Iusem, A. N.; Svaiter, B. F.; Teboulle, M., Entropy-like proximal methods in convex programming, Math. Oper. Res., 19, 790-814 (1994) · Zbl 0821.90092
[11] Konnov, I., A combined relaxation method for a class of nonlinear variational inequalities, Optimization, 51, 127-143 (2002) · Zbl 1013.49004
[12] Lemaire, B., Coupling optimization methods and variational convergence, (Hoffmann, K. H.; Hiriart-urruty, J. B.; Lemaréchal, C.; Zowe, J., Trends in Mathematical Optimization. Trends in Mathematical Optimization, Int. Ser. Numer. Math. (1998), Birkhauser-verlag: Birkhauser-verlag Basel), 163-179 · Zbl 0633.49010
[13] Marcotte, P., Application of Khobotov’s algorithm to variational inequalities and network equilibrium problems, INFOR, 29, 258-270 (1991) · Zbl 0781.90086
[14] Makler-Scheimberg, S.; Nguyen, V. H.; Strodiot, J. J., Family of perturbation methods for variational inequalities, J. Optim. Theory Appl., 89, 423-452 (1996) · Zbl 0848.49008
[15] Nadler, S. B., Multi-valued contraction mappings, Pacific J. Math., 30, 475-488 (1969) · Zbl 0187.45002
[16] B.T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987; B.T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987 · Zbl 0625.62093
[17] Panagiotopoulos, P.; Stavroulakis, G., New types of variational principles based on the notion of quasidifferentiability, Acta Mech., 94, 171-194 (1994) · Zbl 0756.73096
[18] Rockafellar, R. T., Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14, 877-898 (1976) · Zbl 0358.90053
[19] Salmon, G.; Strodiot, J. J.; Nguyen, V. H., A bundle method for solving variational inequalities, SIAM J. Optim., 14, 869-893 (2004) · Zbl 1064.65051
[20] Solodov, M. V.; Svaiter, B. F., A new projection method for variational inequality problems, SIAM J. Control Optim., 37, 765-776 (1999) · Zbl 0959.49007
[21] Tseng, P., Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim., 29, 119-138 (1991) · Zbl 0737.90048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.