×

Weak solutions for forward-backward SDEs-a martingale problem approach. (English) Zbl 1154.60045

Summary: We propose a new notion of Forward-Backward Martingale Problem (FBMP), and study its relationship with the weak solution to the forward-backward stochastic differential equations (FBSDEs). The FBMP extends the idea of the well-known (forward) martingale problem of Stroock and Varadhan, but it is structured specifically to fit the nature of an FBSDE. We first prove a general sufficient condition for the existence of the solution to the FBMP. In the Markovian case with uniformly continuous coefficients, we show that the weak solution to the FBSDE (or equivalently, the solution to the FBMP) does exist. Moreover, we prove that the uniqueness of the FBMP (whence the uniqueness of the weak solution) is determined by the uniqueness of the viscosity solution of the corresponding quasilinear PDE.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
35K55 Nonlinear parabolic equations
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Antonelli, F. and Ma, J. (2003). Weak solutions of forward-backward SDE’s. Stochastic Anal. Appl. 21 493-514. · Zbl 1055.60055
[2] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley, New York. · Zbl 0944.60003
[3] Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L. (2003). \( solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 109-129.\) · Zbl 1075.65503
[4] Buckdahn, R., Engelbert, H.-J. and Răşcanu, A. (2004). On weak solutions of backward stochastic differential equations. Teor. Veroyatn. Primen. 49 70-108. · Zbl 1095.60019
[5] Crandall, M. G., Ishii, H. and Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. ( N.S. ) 27 1-67. · Zbl 0755.35015
[6] Delarue, F. (2002). On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stochastic Process. Appl. 99 209-286. · Zbl 1058.60042
[7] Delarue, F. (2003). Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme. In Séminaire de Probabilités XXXVII. Lecture Notes in Math. 1832 290-332. Springer, Berlin. · Zbl 1055.35029
[8] Delarue, F. and Guatteri, G. (2006). Weak existence and uniqueness of FBSDEs. Stochastic Processes Appl. 116 1712-1742. · Zbl 1113.60059
[9] El Karoui, N. and Mazliak, L. (1997). Backward Stochastic Differential Equations. Pitman Research Notes in Mathematics Series 364 . Longman, Harlow. · Zbl 0866.00052
[10] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-71. · Zbl 0884.90035
[11] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence . Wiley, New York. · Zbl 0592.60049
[12] Hu, Y. and Ma, J. (2004). Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients. Stochastic Process. Appl. 112 23-51. · Zbl 1084.60031
[13] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes , 2nd ed. North-Holland, Amsterdam. · Zbl 0684.60040
[14] Kobylanski, M. (2000). Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 558-602. · Zbl 1044.60045
[15] Lepeltier, J. P. and San Martin, J. (1997). Backward stochastic differential equations with continuous coefficient. Statist. Probab. Lett. 32 425-430. · Zbl 0904.60042
[16] Ma, J., Protter, P. and Yong, J. M. (1994). Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Related Fields 98 339-359. · Zbl 0794.60056
[17] Ma, J. and Yong, J. (1995). Solvability of forward-backward SDEs and the nodal set of Hamilton-Jacobi-Bellman equations. Chinese Ann. Math. Ser. B 16 279-298. · Zbl 0832.60067
[18] Ma, J. and Yong, J. (1999). Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702 . Springer, Berlin. · Zbl 0927.60004
[19] Ma, J. and Zhang, J. (2002). Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12 1390-1418. · Zbl 1017.60067
[20] Ma, J. and Zhang, J. (2002). Path regularity for solutions of backward stochastic differential equations. Probab. Theory Related Fields 122 163-190. · Zbl 1014.60060
[21] Ma, J., Zhang, J. and Zheng, Z. (2005). Weak solutions of forward-backward SDEs and their uniqueness.
[22] Meyer, P.-A. and Zheng, W. A. (1984). Tightness criteria for laws of semimartingales. Ann. Inst. H. Poincaré Probab. Statist. 20 353-372. · Zbl 0551.60046
[23] Nash, J. (1958). Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 931-954. JSTOR: · Zbl 0096.06902
[24] Pardoux, É. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55-61. · Zbl 0692.93064
[25] Protter, P. (1990). Stochastic Integration and Differential Equations. Applications of Mathematics ( New York ) 21 . Springer, Berlin. · Zbl 0694.60047
[26] Stroock, D. W. and Varadhan, S. R. S. (1979). Multidimensional Diffusion Processes . Springer, Berlin. · Zbl 0426.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.