×

K-processes, scaling limit and aging for the trap model in the complete graph. (English) Zbl 1154.60073

The paper departs from trap models in the complete graph (symmetric continuous time random walk, typically in a regular graph, finite or infinite), employed in the study of scaling limits of various mean-field theory spin-glass systems which may exhibit an aging property (one or multiple aging regimes). Phenomenological models, like that of the Glauber dynamics for the random energy model, usually give rise to aging as a property of a given two-time correlation function, while the authors attempt to prove that it may arise as a scaling limit of the full dynamics. Here, in the scaling limit, the aging is a dynamical phenomenon at vanishing times.
The major technical tool are the so-called K-processes whose first examples were given by A. N. Kolmogorov [On the differentiability of the transition probabilities in stationary Markov processes with a denumerable number of states. Moskov. Gos. Univ. Učenye Zapiski Matematika 148, 53–59 (1951)] and their classifications among Markov systems with a denumerable state space was set by P. Lévy [Ann. Sci. Éc. Norm. Supér., III. Sér. 68, 327–381 (1951; Zbl 0044.33803)]. An approach based on Dirichlet forms is supplemented by an explicit probabilistic construction. Arguments in favor of an equivalence of both routes are given. Links with the Fukushima [cf. Zh.-Q. Chen, M. Fukushima, J. Funct. Anal. 252, No. 2, 710–733 (2007; Zbl 1129.60072)] extension of certain Markov processes beyond a killing time are mentioned.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60K37 Processes in random environments
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics

References:

[1] Ben Arous, G. and Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one. Ann. Appl. Probab. 15 1161-1192. · Zbl 1069.60092 · doi:10.1214/105051605000000124
[2] Ben Arous, G. and Černý, J. (2007). Scaling limit for trap models on \Bbb Z d . Ann. Probab. 35 2356-2384. · Zbl 1134.60064 · doi:10.1214/009117907000000024
[3] Ben Arous, G. and Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Comm. Pure Appl. Math. 61 289-329. · Zbl 1141.60075 · doi:10.1002/cpa.20177
[4] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys. 235 379-425. · Zbl 1037.82038 · doi:10.1007/s00220-003-0798-4
[5] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys. 236 1-54. · Zbl 1037.82039 · doi:10.1007/s00220-003-0799-3
[6] Ben Arous, G., Černý, J. and Mountford, T. (2006). Aging in two-dimensional Bouchaud’s model. Probab. Theory Related Fields 134 1-43. · Zbl 1089.82017 · doi:10.1007/s00440-004-0408-1
[7] Bouchaud, J.-P. and Dean, D. S. (1995). Aging on Parisi’s tree. J. Phys. I France 5 265-286.
[8] Bouchaud, J.-P., Cugliandolo, L., Kurchan, J. and Mézard, M. (1998). Out of equilibrium dynamics in spin-glasses and other glassy systems. In Spin-Glasses and Random Fields (A. P. Young, ed.) 161-224. World Scientific, Singapore.
[9] Bovier, A. and Faggionato, A. (2005). Spectral characterization of aging: The REM-like trap model. Ann. Appl. Probab. 15 1997-2037. · Zbl 1086.60064 · doi:10.1214/105051605000000359
[10] Černý, J. (2003). On two properties of strongly disordered systems, aging and critical path analysis. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne.
[11] Chen, Z.-Q., Fukushima, M. and Ying, J. (2007). Extending Markov processes in weak duality by Poisson point processes of excursions. In Stochastic Analysis and Applications. The Abel Symposium 2005 (F. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal and T. Zhang, eds.). Springer, Berlin. · Zbl 1138.60050
[12] Chung, K. L. (1967). Markov Chains with Stationary Transition Probabilities , 2nd ed. Springer, Berlin. · Zbl 0146.38401
[13] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence . Wiley, New York. · Zbl 0592.60049
[14] Feller, W. (1971). An Introduction to Probability Theory and Its Applications II , 2nd ed. Wiley, New York. · Zbl 0219.60003
[15] Fontes, L. R. G., Isopi, M., Kohayakawa, Y. and Picco, P. (1998). Spectral gap of the REM under Metropolis dynamics. Ann. Appl. Probab. 8 917-943. · Zbl 0935.60084 · doi:10.1214/aoap/1028903457
[16] Fontes, L. R. G., Isopi, M. and Newman, C. M. (2002). Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. Ann. Probab. 30 579-604. · Zbl 1015.60099 · doi:10.1214/aop/1023481003
[17] Freedman, D. (1972). Approximating Countable Markov Chains . Holden-Day, San Francisco, CA. · Zbl 0325.60059
[18] Fukushima, M. and Tanaka, H. (2005). Poisson point processes attached to symmetric diffusions. Ann. Inst. H. Poincaré Probab. Statist. 41 419-459. · Zbl 1083.60065 · doi:10.1016/j.anihpb.2004.10.004
[19] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes . de Gruyter, Berlin. · Zbl 0838.31001
[20] Kendall, D. G. and Reuter, G. E. H. (1956). Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on l . In Proceedings of the International Congress of Mathematicians , 1954 , Amsterdam III 377-415. Erven P. Noordhoff N. V., Groningen. · Zbl 0073.12901
[21] Kolmogorov, A. N. (1951). On the differentiability of the transition probabilities in stationary Markov processes with a denumerable number of states. Moskov. Gos. Univ. Učenye Zapiski Matematika 148 53-59.
[22] Lévy, P. (1951). Systèmes markoviens et stationnaires. Cas dénombrable. Ann. Sci. École Norm. Sup. ( 3 ) 68 327-381. · Zbl 0044.33803
[23] Sharpe, M. (1988). General Theory of Markov Processes . Academic Press, Boston. · Zbl 0649.60079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.