zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solution for an anti-symmetric quadratic nonlinear oscillator by a modified He’s homotopy perturbation method. (English) Zbl 1154.65349
Summary: He’s homotopy perturbation method has been adapted to calculate higher-order approximate periodic solutions for a nonlinear oscillator with discontinuity for which the elastic force term is an anti-symmetric and quadratic term. We find that He’s homotopy perturbation method works very well for the whole range of initial amplitudes, and the excellent agreement of the approximate frequencies and periodic solutions with the exact ones has been demonstrated and discussed. Just one iteration leads to high accuracy of the solutions with a maximal relative error for the approximate period of less than 0.73% for all values of oscillation amplitude, while this relative error is as low as 0.040% when the second iteration is considered. Comparison of the result obtained using this method with those obtained by the harmonic balance method reveals that the former is very effective and convenient.

MSC:
65L99Numerical methods for ODE
34A45Theoretical approximation of solutions of ODE
WorldCat.org
Full Text: DOI
References:
[1] He, J. H.: A new perturbation technique which is also valid for large parameters. J. sound vibration 229, 1257-1263 (2000) · Zbl 1235.70139
[2] He, J. H.: Modified Lindstedt--Poincarè methods for some non linear oscillations. Part III: Double series expansion. Int. J. Nonlinear sci. Numer. simul. 2, 317-320 (2001) · Zbl 1072.34507
[3] Özis, T.; Yildirim, A.: Determination of periodic solution for a u1/3 force by he’s modified Lindstedt--Poincaré method. J. sound vibration 301, 415-419 (2007)
[4] Amore, P.; Fernández, F. M.: Exact and approximate expressions for the period of anharmonic oscillators. European J. Phys. 26, 589-601 (2005)
[5] Amore, P.; Raya, A.; Fernández, F. M.: Alternative perturbation approaches in classical mechanics. European J. Phys. 26, 1057-1063 (2005) · Zbl 1080.70014
[6] Mickens, R. E.: Oscillations in planar dynamics systems. (1996) · Zbl 0840.34001
[7] Beléndez, A.; Hernández, A.; Márquez, A.; Beléndez, T.; Neipp, C.: Analytical approximations for the period of a simple pendulum. European J. Phys. 27, 539-551 (2006)
[8] Beléndez, A.; Hernández, A.; Beléndez, T.; Álvarez, M. L.; Gallego, S.; Ortuño, M.; Neipp, C.: Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire. J. sound vibration 302, 1018-1029 (2007) · Zbl 1242.34056
[9] Itovich, G. R.; Moiola, J. L.: On period doubling bifurcations of cycles and the harmonic balance method. Chaos solitons fractals 27, 647-665 (2005) · Zbl 1083.37041
[10] Shou, D. H.; He, J. H.: Application of parameter-expanding method to strongly nonlinear oscillators. Int. J. Nonlinear sci. Numer. simul. 8, No. 1, 121-124 (2007)
[11] He, J. H.; Wu, X. H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos solitons fractals 29, 108-113 (2006) · Zbl 1147.35338
[12] He, J. H.: Variational approach for nonlinear oscillators. Chaos solitons fractals 34, 1430-1439 (2007) · Zbl 1152.34327
[13] Tatari, M.; Dehghan, M.: The use of he’s variational iteration method for solving a Fokker--Planck equation. Phys. scripta 74, 310-316 (2006) · Zbl 1108.82033
[14] Tatari, M.; Dehghan, M.: Solution of problems in calculus of variations via he’s variational iteration method. Phys. lett. A 362, 401-406 (2007) · Zbl 1197.65112
[15] Batiha, B.; Noorani, M. S. M.; Hashim, I.: Numerical simulation of the generalized Huxley equation by he’s variational iteration method. Appl. math. Comput. 186, 1322-1325 (2007) · Zbl 1118.65367
[16] Beléndez, A.; Hernández, A.; Beléndez, T.; Márquez, A.; Neipp, C.: An improved ’heuristic’ approximation for the period of a nonlinear pendulum: linear analysis of a classical nonlinear problem. Int. J. Nonlinear sci. Numer. simul. 8, No. 3, 329-334 (2007)
[17] Geng, Lei; Cai, Xu-Chu: He’s frequency formulation for nonlinear oscillators. European J. Phys. 28, 923-931 (2007) · Zbl 1162.70019
[18] Xu, L.: He’s parameter-expanding methods for strongly nonlinear oscillators. J. comput. Appl. math. 207, 148-154 (2007) · Zbl 1120.65084
[19] J.H. He, Non-perturbative methods for strongly nonlinear problems, Dissertation, De-Verlag im Internet GmbH, Berlin, 2006
[20] He, J. H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern phys. B 20, 1141-1199 (2006) · Zbl 1102.34039
[21] He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. math. Comput. 151, 287-292 (2004) · Zbl 1039.65052
[22] Cai, X. C.; Wu, W. Y.; Li, M. S.: Approximate period solution for a kind of nonlinear oscillator by he’s perturbation method. Int. J. Nonlinear sci. Numer. simul. 7, No. 1, 109-117 (2006)
[23] Cveticanin, L.: Homotopy-perturbation for pure nonlinear differential equation. Chaos solitons fractals 30, 1221-1230 (2006) · Zbl 1142.65418
[24] Abbasbandy, S.: Application of he’s homotopy perturbation method for Laplace transform. Chaos solitons fractals 30, 1206-1212 (2006) · Zbl 1142.65417
[25] Beléndez, A.; Hernández, A.; Beléndez, T.; Márquez, A.: Application of the homotopy perturbation method to the nonlinear pendulum. European J. Phys. 28, 93-104 (2007) · Zbl 1119.70017
[26] Beléndez, A.; Hernández, A.; Beléndez, T.; Fernández, E.; Álvarez, M. L.; Neipp, C.: Application of he’s homotopy perturbation method to the Duffing-harmonic oscillator. Int. J. Nonlinear sci. Numer. simul. 8, No. 1, 79-88 (2007)
[27] Ganji, D. D.; Sadighi, A.: Application of he’s homotopy-perturbation method to nonlinear coupled systems of reaction--diffusion equations. Int. J. Nonlinear sci. Numer. simul. 7, No. 4, 411-418 (2006)
[28] Abbasbandy, S.: A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method. Chaos solitons fractals 31, 257-260 (2007)
[29] Siddiqui, A.; Mahmood, R.; Ghori, Q.: Thin film flow of a third grade fluid on moving a belt by he’s homotopy perturbation method. Int. J. Nonlinear sci. Numer. simul. 7, No. 1, 15-26 (2006) · Zbl 1187.76622
[30] He, J. H.: Homotopy perturbation method for solving boundary value problems. Phys. lett. A 350, 87-88 (2006) · Zbl 1195.65207
[31] Rafei, M.; Ganji, D. D.: Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method. Int. J. Nonlinear sci. Numer. simul. 7, No. 3, 321-328 (2006) · Zbl 1160.35517
[32] Ganji, D. D.: The application of he’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. lett. 355, 337-341 (2006) · Zbl 1255.80026
[33] Chowdhury, M. S. H.; Hashim, I.: Application of homotopy-perturbation method to nonlinear population dynamics models. Phys. lett. A 368, 251-258 (2007) · Zbl 1209.65107
[34] Ariel, P. D.; Hayat, T.: Homotopy perturbation method and axisymmetric flow over a stretching sheet. Int. J. Nonlinear sci. Numer. simul. 7, No. 4, 399-406 (2006)
[35] Chowdhury, M. S. H.; Hashim, I.: Solutions of time-dependent Emden--Fowler type equations by homotopy-perturbation method. Phys. lett. A 368, 305-313 (2007) · Zbl 1209.65106
[36] Chowdhury, M. S. H.; Hashim, I.: Solutions of a class of singular second-order ivps by homotopy-perturbation method. Phys. lett. A 365, 439-447 (2007) · Zbl 1203.65124
[37] Shakeri, F.; Dehghan, M.: Inverse problem of diffusion by he’s homotopy perturbation method. Phys. scripta 75, 551-556 (2007) · Zbl 1110.35354
[38] Dehghan, M.; Shakeri, F.: Solution of a partial differential equation subject to temperature overspecification by he’s homotopy perturbation method. Phys. scripta 75, 778-787 (2007) · Zbl 1117.35326
[39] Chowdhury, M. S. H.; Hashim, I.: Solutions of Emden--Fowler equations by homotopy-perturbation method. Nonlinear anal. B: real world appl. (2007) · Zbl 1209.65106
[40] Cveticanin, L.: Application of homotopy-perturbation to non linear partial differential equations. Chaos solitons fractals (2007) · Zbl 1197.65200
[41] Mickens, R. E.; Ramadhani, I.: Investigations of an anti-symmetric quadratic non linear oscillator. J. sound vibration 155, 190-193 (1992) · Zbl 0925.70289
[42] Wang, S. -Q.; He, J. H.: Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos solitons fractals (2007)
[43] Beléndez, A.; Pascual, C.; Gallego, S.; Ortuño, M.; Neipp, C.: Application of a modified he’s homotopy perturbation method to obtain higher-order approximations of a x1/3 force nonlinear oscillator. Phys. lett. A (2007) · Zbl 1209.65083
[44] Mickens, R. E.; Mixon, M.: Application of generalized harmonic balance method to an anti-symmetric quadratic non linear oscillator. J. sound vibration 159, 546-568 (1992) · Zbl 0925.70234
[45] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. (1972) · Zbl 0543.33001
[46] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions with formulas, graphs and mathematical tables. (1972) · Zbl 0543.33001