zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Three-dimensional flow over a stretching surface in a viscoelastic fluid. (English) Zbl 1154.76315
Summary: This article looks at the hydrodynamic elastico-viscous fluid over a stretching surface. The equations governing the flow are reduced to ordinary differential equations, which are analytically solved by applying an efficient technique namely the homotopy analysis method (HAM). The solutions for the velocity components are computed. The numerical values of wall skin friction coefficients are also tabulated. The present HAM solution is compared with the known exact solution for the two-dimensional flow and an excellent agreement is found.

76A10Viscoelastic fluids
Full Text: DOI
[1] Abbas, Z.; Sajid, M.; Hayat, T.: MHD boundary layer flow of an upper-convected Maxwell fluid in a porous channel, Theor. comput. Fluid dyn. 20, 229-238 (2006) · Zbl 1109.76065 · doi:10.1007/s00162-006-0025-y
[2] Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. lett. A 360, 109-113 (2006) · Zbl 1236.80010
[3] Aboeldahab, E. M.; Azzam, G. E. D.A.: Unsteady three-dimensional combined heat and mass transfer fee convective flow over a stretching surface with time-dependent chemical reaction, Acta mech. 184, 121-136 (2006) · Zbl 1130.76074 · doi:10.1007/s00707-006-0321-z
[4] F.M. Allan, Derivation of the Adomian decomposition method using the homotopy analysis method, Appl. Math. Comput., in press. · Zbl 1125.65063 · doi:10.1016/j.amc.2006.12.074
[5] Chamkha, A. J.: Hydromagnetic three-dimensional free convection on a vertical stretching surface with heat generation or absorption, Int. J. Heat fluid flow. 20, 84-92 (1999)
[6] Devi, C. D. S.; Takhar, H. S.; Nath, G.: Unsteady three-dimensional, boundary layer flow due to a stretching surface, Int. J. Heat mass transfer 29, 1996-1999 (1986)
[7] Hayat, T.; Abbas, Z.; Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys. lett. A 358, 396-403 (2006) · Zbl 1142.76511 · doi:10.1016/j.physleta.2006.04.117
[8] Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S.: The influence of thermal radiation on MHD flow of a second grade fluid, Int. J. Heat mass transfer 50, 931-941 (2007) · Zbl 1124.80325 · doi:10.1016/j.ijheatmasstransfer.2006.08.014
[9] Hayat, T.; Sajid, M.: Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int. J. Heat mass transfer 50, 75-84 (2007) · Zbl 1104.80006 · doi:10.1016/j.ijheatmasstransfer.2006.06.045
[10] Hayat, T.; Sajid, M.: On the analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. lett. A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[11] Khan, S. K.; Abel, M. S.; Sonth, R. M.: Visco-elastic MHD flow, heat and mass transfer over a porous stretching sheet with dissipation of energy and stress work, Heat mass transfer 40, 47-57 (2003)
[12] Kumari, M.; Takhar, H. S.; Nath, G.: MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux, Wärme stoffübertrag. 25, 331-336 (1990)
[13] Lakshmisha, K. N.; Venkateswaran, S.; Nath, G.: Three-dimensional unsteady flow with heat and mass transfer over a continuous stretching surface, ASME J. Heat transfer 110, 590-595 (1988)
[14] S.J. Liao, The proposed homotopy analysis technique for the solution of non-linear problems. Ph.D Thesis, Shanghai Jiao Tong University, 1992.
[15] Liao, S. J.: Application of process analysis method to the solution of 2D nonlinear progressive gravity waves, J. ship res. 36, 30-37 (1992)
[16] Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[17] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl. math. Comput. 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[18] Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int. J. Heat mass transfer 48, 2529-2539 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[19] Liao, S. J.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Commun. non-linear sci. Numer. simul. 11, 326-339 (2006) · Zbl 1078.76022 · doi:10.1016/j.cnsns.2004.09.004
[20] Sadeghy, K.; Sharifi, M.: Local similarity solution for the flow of a second grade viscoelastic fluid above a moving plate, Int. J. Non-linear mech. 39, 1265-1273 (2004) · Zbl 05138527
[21] M. Sajid, T. Hayat, The application of homotopy analysis method to thin film flows of a third order fluid, Choas Solitons and Fractals, in press. · Zbl 1146.76588 · doi:10.1016/j.chaos.2006.11.034
[22] Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of the steady flow of a fourth grade fluid, Phys. lett. A 355, 18-24 (2006)
[23] M. Sajid, T. Hayat, S. Asghar, Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear Dyn., in press. · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[24] Sakiadis, B. C.: Boundary layer behavior on continuous solid surfaces: I boundary layer equations for two dimensional and axisymmetric flow, Aiche J. 7, 26-28 (1961)
[25] Seshadri, R.; Sreeshylan, N.; Nath, G.: Unsteady three-dimensional stagnation point flow of a viscoelastic fluid, Int. J. Eng. sci. 35, 445-454 (1997) · Zbl 0899.76049 · doi:10.1016/S0020-7225(96)00095-X
[26] Takhar, H. S.; Chamkha, A. J.; Nath, G.: Unsteady three-dimensional MHD boundary layer flow due to the impulsive motion of a stretching surface, Acta mech. 146, 59-71 (2001) · Zbl 0974.76097 · doi:10.1007/BF01178795
[27] Y. Tan, S. Abbasbandy, Homotopy analysis method for quadratic Recati differential equation, Commun. Non-Linear Sci. Numer. Simul., in press. · Zbl 1132.34305
[28] Wang, C. Y.: The three-dimensional flow due to a stretching flat surface, Phys. fluids 27, 1915-1917 (1984) · Zbl 0545.76033 · doi:10.1063/1.864868
[29] Zhu, S. P.: An exact and explicit solution for the valuation of American put options, Quant. finance 6, 229-242 (2006) · Zbl 1136.91468 · doi:10.1080/14697680600699811