Nielsen, Jan Nygaard; Vestergaard, Martin Estimation in continuous-time stochastic volatility models using nonlinear filters. (English) Zbl 1154.91467 Int. J. Theor. Appl. Finance 3, No. 2, 279-308 (2000). Summary: The stylized facts of stock prices, interest and exchange rates have led econometricians to propose stochastic volatility models in both discrete and continuous time. However, the volatility as a measure of economic uncertainty is not directly observable in the financial markets. The objective of the continuous-discrete filtering problem considered here is to obtain estimates of the stock price and, in particular, the volatility using discrete-time observations of the stock price. Furthermore, the nonlinear filter acts as an important part of a proposed method for maximum likelihood for estimating embedded parameters in stochastic differential equations. In general, only approximate solutions to the continuous-discrete filtering problem exist in the form of a set of ordinary differential equations for the mean and covariance of the state variables. In the present paper the small-sample properties of a second order filter is examined for some bivariate stochastic volatility models and the new combined parameter and state estimation method is applied to US stock market data. Cited in 4 Documents MSC: 91B28 Finance etc. (MSC2000) 60H15 Stochastic partial differential equations (aspects of stochastic analysis) Keywords:stochastic volatility; volatility estimation; nonlinear filtering, Monte Carlo simulation PDF BibTeX XML Cite \textit{J. N. Nielsen} and \textit{M. Vestergaard}, Int. J. Theor. Appl. Finance 3, No. 2, 279--308 (2000; Zbl 1154.91467) Full Text: DOI References: [1] DOI: 10.1093/rfs/9.2.385 [2] DOI: 10.2307/2329019 [3] Artzner P., RISK 10 pp 68– (1997) · Zbl 1082.91525 [4] DOI: 10.2307/2330744 [5] DOI: 10.2307/2331111 [6] DOI: 10.1016/0304-4076(86)90063-1 · Zbl 0616.62119 [7] DOI: 10.1016/0304-4076(92)90064-X · Zbl 0825.90057 [8] DOI: 10.2307/2328983 [9] DOI: 10.1111/0022-1082.00208 [10] DOI: 10.1016/0304-405X(82)90018-6 [11] DOI: 10.2307/2330930 [12] Diebold F. X., J. Empirical Finance 1 pp 83– (1989) [13] DOI: 10.1016/0304-4076(95)01750-X · Zbl 0862.90044 [14] DOI: 10.1016/S0304-4076(97)00009-2 · Zbl 0898.62141 [15] DOI: 10.2307/2951768 · Zbl 0783.62099 [16] Engle R. F., Chap. 11 pp 333– [17] DOI: 10.1017/S0266466600006976 · Zbl 04534738 [18] DOI: 10.1016/S0304-4076(97)00039-0 · Zbl 0904.62134 [19] DOI: 10.1002/jae.3950080507 [20] DOI: 10.1016/0378-4266(95)00034-8 [21] DOI: 10.1016/S0304-4076(97)00107-3 · Zbl 0962.62094 [22] DOI: 10.1016/0304-4076(92)90068-3 · Zbl 04506586 [23] DOI: 10.2307/2297980 · Zbl 0805.90026 [24] DOI: 10.1093/rfs/6.2.327 · Zbl 1384.35131 [25] DOI: 10.1111/1467-9965.00043 · Zbl 0908.90012 [26] DOI: 10.1016/0261-5606(87)90029-5 [27] DOI: 10.2307/2328253 [28] Hull J., Adv. Futures and Options Research 3 pp 29– (1988) [29] DOI: 10.1016/0165-1765(80)90024-5 [30] DOI: 10.1017/S0266466600006101 · Zbl 04542024 [31] Jiang G. J., J. Computational Finance 2 (3) (1999) [32] DOI: 10.2307/2330709 [33] DOI: 10.1214/aos/1176344207 · Zbl 0383.62055 [34] DOI: 10.1111/j.1467-9892.1983.tb00373.x · Zbl 0536.62067 [35] DOI: 10.1016/0304-4076(90)90092-8 · Zbl 0719.60089 [36] DOI: 10.1016/0304-4076(92)90065-Y · Zbl 0761.62169 [37] DOI: 10.2307/2171861 · Zbl 0906.62127 [38] Pedersen A. R., Scandinavian J. Stat. 22 pp 55– (1995) [39] DOI: 10.1093/rfs/11.3.449 [40] DOI: 10.2307/2326355 [41] DOI: 10.1109/TIT.1965.1053737 · Zbl 0127.10805 [42] DOI: 10.2307/2330793 [43] Scott L. O., Adv. Futures and Options Research 5 pp 113– (1991) [44] DOI: 10.1002/jae.3950080506 [45] DOI: 10.2307/2329471 [46] DOI: 10.1093/rfs/4.4.727 · Zbl 1458.62253 [47] DOI: 10.1111/j.1467-9965.1994.tb00057.x · Zbl 0884.90054 [48] DOI: 10.1142/S0129065797000392 · Zbl 05470023 [49] DOI: 10.1109/9.250522 · Zbl 0776.93062 [50] DOI: 10.1016/0304-405X(87)90009-2 [51] DOI: 10.1142/S0219024998000163 · Zbl 0909.90036 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.