Yang, Hao; Jiang, Bin; Cocquempot, Vincent A fault tolerant control framework for periodic switched non-linear systems. (English) Zbl 1154.93372 Int. J. Control 82, No. 1, 117-129 (2009). Summary: An observer-based fault tolerant control (FTC) framework is proposed for a class of periodic switched non-linear systems (PSNS) without full state measurements. Two kinds of faults are considered: continuous faults that affect each mode during its dwell period; and discrete faults that affect the switching sequence. Under the average dwell time scheme, the proposed FTC framework can maintain the stability of overall PSNS in spite of these two kinds of fault. A switched reluctance motor example is taken to illustrate the efficiency of the proposed method. Cited in 29 Documents MSC: 93C15 Control/observation systems governed by ordinary differential equations 93C10 Nonlinear systems in control theory 93D25 Input-output approaches in control theory 93B07 Observability Keywords:switched non-linear systems; fault tolerant control; observer; average dwell time PDF BibTeX XML Cite \textit{H. Yang} et al., Int. J. Control 82, No. 1, 117--129 (2009; Zbl 1154.93372) Full Text: DOI References: [1] Blanke M, Diagnosis and Fault-Tolerant Control (2003) [2] Brockett RW, IEEE International Symposium on Circuit Theory pp 1– (1974) [3] Chen J, Robust Model-based Fault Diagnosis for Dynamics Systems (1999) [4] Cocquempot V, Proc. of 5th Asian Control Conference pp 1204– (2004) [5] DOI: 10.1080/00207170412331323641 · Zbl 1067.93008 [6] DOI: 10.1016/j.sysconle.2005.05.005 · Zbl 1129.93538 [7] Gertler JJ, Fault Detection and Diagnosis in Engineering Systems (1998) [8] DOI: 10.1080/00207170412331326972 · Zbl 1076.93018 [9] DOI: 10.1109/TAC.2004.841937 · Zbl 1365.93349 [10] DOI: 10.1109/TAC.2006.878732 · Zbl 1366.93694 [11] DOI: 10.1080/00207170210149934 · Zbl 1038.93016 [12] Kajdan, R, Graton, G, Aubry, D and Kratz, F. 2006. ’Fault Detection of a Nonlinear Switching System Using Finite Memory Observers’. Proc. of IFAC Safeprocess 06’. 2006. pp.1051–1056. [13] DOI: 10.1016/S0005-1098(02)00267-4 · Zbl 1013.93045 [14] DOI: 10.1007/978-1-4612-0017-8 [15] DOI: 10.1109/TAC.2005.858692 · Zbl 1365.93410 [16] Miller RK, Ordinary Differential Equations (1982) [17] Parisini T, Proc. of IEEE ISIC/CIRA/ISAS Joint Conference pp 163– (1998) [18] DOI: 10.1016/S0005-1098(03)00181-X · Zbl 1054.93024 [19] DOI: 10.1080/002071798222640 · Zbl 0933.93019 [20] DOI: 10.1016/0167-6911(94)00050-6 · Zbl 0877.93121 [21] DOI: 10.1109/9.536498 · Zbl 0862.93051 [22] DOI: 10.1109/TAC.1987.1104616 · Zbl 0611.93039 [23] DOI: 10.1109/TAC.2005.861716 · Zbl 1366.93682 [24] Vu, L, Chatterjee, D and Liberzon, D. 2005. ’ISS of Switched Systems and Applications to Switching Adaptive Control’. Proc. of the Joint 44th IEEE Conference on Decision and Control, European Control Conference. 2005. pp.120–125. [25] DOI: 10.1016/j.automatica.2004.02.018 · Zbl 1056.93034 [26] DOI: 10.1109/9.975483 · Zbl 1017.93038 [27] DOI: 10.1109/TAC.2004.829656 · Zbl 1365.93049 [28] DOI: 10.1016/S0005-1098(02)00010-9 · Zbl 1031.93042 [29] Yang, H, Jiang, B, Cocquempot, V and Staroswiecki, M. 2006. ’Adaptive Fault Tolerant Strategy for a Class of Hybrid Systems’. Proc. of IFAC Safeprocess 06’, 2006. 2006. pp.1021–1026. [30] DOI: 10.1049/iet-cta:20060406 [31] DOI: 10.1049/ip-cta:20000134 [32] DOI: 10.1109/TAES.2003.1238740 [33] Ezzine J, International Journal of Control 49 pp 2045– (1989) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.