×

How smooth is almost every function in a Sobolev space? (English) Zbl 1155.28302

Summary: We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.

MSC:

28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
26A21 Classification of real functions; Baire classification of sets and functions
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
28A80 Fractals
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

References:

[1] Benyamini, Y. and Lindenstrauss, J.: Geometric nonlinear functional analysis. Vol. 1 . American Mathematical Society Colloquium Publications 48 . American Mathematical Society, Providence, RI, 2000. · Zbl 0946.46002
[2] Billingsley, P.: Convergence of probability measures . Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley, New York, 1999. · Zbl 0944.60003
[3] Christensen, J. P. R.: On sets of Haar measure zero in Abelian Polish groups. Israel J. Math. 13 (1972), 255-260. · Zbl 0249.43002 · doi:10.1007/BF02762799
[4] Frisch, U. and Parisi, G.: On the singularity structure of fully developed turbulence. In Proc. Int. Sum. School Enrico Fermi , 84-88. North Holland, Amsterdam, 1998.
[5] Hunt, B.: The prevalence of continuous nowhere differentiable functions. Proc. Amer. Math. Soc. 122 (1994), no. 3, 711-717. · Zbl 0861.26003 · doi:10.2307/2160745
[6] Hunt, B., Sauer, T. and Yorke, J.: Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27 (1992), 217-238. · Zbl 0763.28009 · doi:10.1090/S0273-0979-1992-00328-2
[7] Jaffard, S.: Pointwise smoothness, two-microlocalisation and wavelet coefficients. Publ. Mat. 35 (1991), 155-168. · Zbl 0760.42016 · doi:10.5565/PUBLMAT_35191_06
[8] Jaffard, S.: Multifractal formalism for functions. I. Results valid for all functions. SIAM J. Math. Anal 28 (1997), 944-970. · Zbl 0876.42021 · doi:10.1137/S0036141095282991
[9] Jaffard, S.: Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3 (1997), no. 1, 1-22. · Zbl 0880.28007 · doi:10.1007/BF02647944
[10] Jaffard, S.: On lacunary wavelet series. Ann. Appl. Probab. 10 (2000), 313-329. · Zbl 1063.60053 · doi:10.1214/aoap/1019737675
[11] Jaffard, S.: On the Frisch-Parisi conjecture. J. Math. Pures Appl. (9) 79 (2000), 525-552. · Zbl 0963.28009 · doi:10.1016/S0021-7824(00)00161-6
[12] Jaffard, S. and Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Amer. Math. Soc. 123 (1996), no. 587. · Zbl 0873.42019
[13] Jaffard, S. and Meyer, Y.: On the pointwise regularity of functions in critical Besov Spaces. J. Funct. Anal. 175 (2000), 415-434. · Zbl 0968.46023 · doi:10.1006/jfan.2000.3605
[14] Meyer, Y.: Ondelettes et opérateurs . Actualités Mathématiques. Hermann, Paris, 1990. · Zbl 0694.41037
[15] Stein, E.: Singular integrals and differentiability properties of functions . Princeton Mathematical Series 30 . Princeton University Press, Princeton, 1970. · Zbl 0207.13501
[16] Triebel, H.: Theory of functions spaces. II . Monographs in Mathematics 84 . Birkhäuser Verlag, Basel, 1992. · Zbl 0763.46025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.