zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The exact analytic solutions of a nonlinear differential iterative equation. (English) Zbl 1155.34339
Summary: This paper is concerned with a second-order nonlinear iterated differential equation of the form $c_{0}x{^{\prime\prime}}(z)+c_{1}x{^{\prime}}(z)+c_{2}x(z)=x(p(z)+bx(z))+h(z)$. By constructing a convergent power series solution of an auxiliary equation, analytic solutions of the original equation are obtained. We discuss not only the general case $|\beta |\neq 1$, but also the critical case $|\beta |=1$, especially when $\beta$ is a root of unity. Furthermore, the exact and explicit analytic solution of the original equation is investigated for the first time. Such equations are important in both applications and the theory of iterations.

34K05General theory of functional-differential equations
34A05Methods of solution of ODE
Full Text: DOI
[1] Eder, E.: The functional differential equation x’$(t)=x(x(t))$, J. differential equations 54, 390-400 (1984) · Zbl 0497.34050 · doi:10.1016/0022-0396(84)90150-5
[2] Si, J. G.; Li, W. R.; Cheng, S. S.: Analytic solutions of an iterative functional differential equation, Comput. math. Appl. 33, 47-51 (1997) · Zbl 0872.34042 · doi:10.1016/S0898-1221(97)00030-8
[3] Li, W. R.: Analytic solutions for a class second order iterative functional differential equation, Acta math. Sinica. 41, No. 1, 167-176 (1998) · Zbl 1030.34058
[4] Liu, H. Z.; Li, W. R.: Analytic solutions of an iterative equation with second order derivatives, DCDIS proc. 3, 1030-1037 (2005)
[5] Liu, Han Ze; Li, Wen Rong: Discussion on the analytic solutions of the second-order iterative differential equation, Bull. korean math. Soc. 43, No. 4, 791-804 (2006) · Zbl 1131.34048 · doi:10.4134/BKMS.2006.43.4.791
[6] Si, J. G.; Wang, X. P.: Analytic solutions of a second-order functional differential equation with a state dependent delay, Results math. 39, 345-352 (2001) · Zbl 1017.34074
[7] Petuhov, V. R.: On a boundary value problem, Trudy sem. Teor. diff. Uravnenii otklon. Argumentom univ. Druzby narodov patrisa lumnmby 3, 252-255 (1965) · Zbl 0196.38302
[8] Si, J. G.; Zhang, W. N.: Analytic solutions of a second-order nonautonomous iterative functional differential equation, J. math. Anal. appl. 306, 398-412 (2005) · Zbl 1083.34060 · doi:10.1016/j.jmaa.2005.01.005
[9] Li, W. R.; Cheng, S. S.: Analytic solutions of an iterative functional equation, Aequationes math. 68, 21-27 (2004) · Zbl 1063.39018 · doi:10.1007/s00010-004-2726-x
[10] Siegel, C. L.: Iteration of analytic functions, Ann. of math. 43, No. 4, 607-612 (1942) · Zbl 0061.14904 · doi:10.2307/1968952
[11] Fichtenholz, G. M.: Functional series, (1970) · Zbl 0213.35001