×

Construction and reconstruction of tight framelets and wavelets via matrix mask functions. (English) Zbl 1155.42008

Summary: The paper develops construction procedures for tight framelets and wavelets using matrix mask functions in the setting of a generalized multiresolution analysis (GMRA). We show the existence of a scaling vector of a GMRA such that its first component exhausts the spectrum of the core space near the origin. The corresponding low-pass matrix mask has an especially advantageous form enabling an effective reconstruction procedure of the original scaling vector. We also prove a generalization of the Unitary Extension Principle for an infinite number of generators. This results in the construction scheme for tight framelets using low-pass and high-pass matrix masks generalizing the classical MRA constructions. We prove that our scheme is flexible enough to reconstruct all possible orthonormal wavelets. As an illustration we exhibit a pathwise connected class of non-MSF non-MRA wavelets sharing the same wavelet dimension function.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Auscher, P., Solution of two problems on wavelets, J. Geom. Anal., 5, 181-236 (1995) · Zbl 0843.42015
[2] Baggett, L., An abstract interpretation of the wavelet dimension function using group representations, J. Funct. Anal., 173, 1-20 (2000) · Zbl 0964.42023
[3] Baggett, L.; Courter, J.; Merrill, K., The construction of wavelets from generalized conjugate mirror filters in \(L^2(R^n)\), Appl. Comput. Harmon. Anal., 13, 201-223 (2002) · Zbl 1027.42031
[4] Baggett, L. W.; Jorgensen, P. E.T.; Merrill, K. D.; Packer, J. A., Construction of Parseval wavelets from redundant filter systems, J. Math. Phys., 46, 083502 (2005) · Zbl 1110.42007
[5] Baggett, L. W.; Jorgensen, P. E.T.; Merrill, K. D.; Packer, J. A., A non-MRA \(C^r\) frame wavelet with rapid decay, Acta Appl. Math., 89, 251-270 (2005) · Zbl 1100.42029
[6] Baggett, L.; Medina, H.; Merrill, K., Generalized multi-resolution analyses and a construction procedure for all wavelet sets in \(R^n\), J. Fourier Anal. Appl., 5, 563-573 (1999) · Zbl 0972.42021
[7] Baggett, L.; Merrill, K., Abstract harmonic analysis and wavelets in \(R^n\), (The Functional and Harmonic Analysis of Wavelets and Frames. The Functional and Harmonic Analysis of Wavelets and Frames, San Antonio, TX, 1999. The Functional and Harmonic Analysis of Wavelets and Frames. The Functional and Harmonic Analysis of Wavelets and Frames, San Antonio, TX, 1999, Contemp. Math., vol. 247 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 17-27 · Zbl 0957.42021
[8] Benedetto, J.; Li, S., The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5, 389-427 (1998) · Zbl 0915.42029
[9] Benedetto, J.; Treiber, O., Wavelet frames: Multiresolution analysis and extension principles, (Wavelet Transforms and Time-Frequency Signal Analysis. Wavelet Transforms and Time-Frequency Signal Analysis, Appl. Numer. Harmon. Anal. (2001), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 3-36 · Zbl 1036.42032
[10] Bownik, M., The structure of shift-invariant subspaces of \(L^2(R^n)\), J. Funct. Anal., 177, 282-309 (2000) · Zbl 0986.46018
[11] Bownik, M., A characterization of affine dual frames in \(L^2(R^n)\), Appl. Comput. Harmon. Anal., 8, 203-221 (2000) · Zbl 0961.42018
[12] Bownik, M., Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc., 164 (2003), No. 781, 122 pp · Zbl 1036.42020
[13] Bownik, M., Baggett’s problem for frame wavelets, (Representations, Wavelets and Frames: A Celebration of the Mathematical Work of Lawrence Baggett (2008), Birkhäuser), 153-173 · Zbl 1213.42129
[14] Bownik, M., Intersection of dilates of shift-invariant spaces, Proc. Amer. Math. Soc., 137, 563-572 (2009) · Zbl 1162.42016
[15] Bownik, M.; Rzeszotnik, Z., The spectral function of shift-invariant spaces, Michigan Math. J., 51, 387-414 (2003) · Zbl 1059.42021
[16] Bownik, M.; Rzeszotnik, Z., On the existence of multiresolution analysis for framelets, Math. Ann., 332, 705-720 (2005) · Zbl 1081.42026
[17] Bownik, M.; Rzeszotnik, Z.; Speegle, D., A characterization of dimension functions of wavelets, Appl. Comput. Harmon. Anal., 10, 71-92 (2001) · Zbl 0979.42018
[18] Brandolini, L.; Garrigós, G.; Rzeszotnik, Z.; Weiss, G., The behaviour at the origin of a class of band-limited wavelets, (The Functional and Harmonic Analysis of Wavelets and Frames. The Functional and Harmonic Analysis of Wavelets and Frames, San Antonio, TX, 1999. The Functional and Harmonic Analysis of Wavelets and Frames. The Functional and Harmonic Analysis of Wavelets and Frames, San Antonio, TX, 1999, Contemp. Math., vol. 247 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 75-91 · Zbl 0956.42023
[19] Dai, X.; Larson, D., Wandering vectors for unitary systems and orthogonal wavelets, Mem. Amer. Math. Soc., 134 (1998), No. 640, viii+68 pp · Zbl 0990.42022
[20] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM: SIAM Philadelphia, PA · Zbl 0776.42018
[21] Daubechies, I.; Han, B.; Ron, A.; Shen, Z., Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14, 1-46 (2003) · Zbl 1035.42031
[22] de Boor, C.; DeVore, R. A.; Ron, A., The structure of finitely generated shift-invariant spaces in \(L_2(R^d)\), J. Funct. Anal., 119, 37-78 (1994) · Zbl 0806.46030
[23] de Boor, C.; DeVore, R. A.; Ron, A., Approximation orders of FSI spaces in \(L_2(R^d)\), Constr. Approx., 14, 631-652 (1998) · Zbl 0919.41009
[24] Frazier, M.; Garrigós, G.; Wang, K.; Weiss, G., A characterization of functions that generate wavelet and related expansion, J. Fourier Anal. Appl., 3, 883-906 (1997) · Zbl 0896.42022
[25] Hernández, E.; Weiss, G., A First Course on Wavelets (1996), CRC Press: CRC Press Boca Raton, FL · Zbl 0885.42018
[26] Lawton, W., Tight frames of compactly supported affine wavelets, J. Math. Phys., 31, 1898-1901 (1990) · Zbl 0708.46020
[27] Paluszyński, M.; Šikić, H.; Weiss, G.; Xiao, S., Generalized low pass filters and MRA frame wavelets, J. Geom. Anal., 11, 311-342 (2001) · Zbl 0985.42020
[28] Paluszyński, M.; Šikić, H.; Weiss, G.; Xiao, S., Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties, Adv. Comput. Math., 18, 297-327 (2003) · Zbl 1018.42020
[29] Ron, A.; Shen, Z., Affine systems in \(L_2(R^d)\): The analysis of the analysis operator, J. Funct. Anal., 148, 408-447 (1997) · Zbl 0891.42018
[30] Ron, A.; Shen, Z., The wavelet dimension function is the trace function of a shift-invariant system, Proc. Amer. Math. Soc., 131, 1385-1398 (2003) · Zbl 1019.42025
[31] Rzeszotnik, Z., Calderón’s condition and wavelets, Collect. Math., 52, 181-191 (2001) · Zbl 0989.42017
[32] Rzeszotnik, Z.; Speegle, D., On wavelets interpolated from a pair of wavelet sets, Proc. Amer. Math. Soc., 130, 2921-2930 (2002) · Zbl 0995.42021
[33] Walters, P., An Introduction to Ergodic Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0475.28009
[34] The Wutam Consortium, Basic properties of wavelets, J. Fourier Anal. Appl., 4, 575-594 (1998) · Zbl 0934.42024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.