×

Exact solutions for nonlinear integral equations by a modified homotopy perturbation method. (English) Zbl 1155.45300

Summary: We apply a new modified homotopy perturbation method to find exact solutions for nonlinear integral equations. A reliable modification of the homotopy perturbation method is proposed, and the modified method is employed to solve the nonlinear integral equations; the results are compared with those obtained by the original homotopy perturbation method. Some examples are given to illustrate the ability and reliability of the modified method. The results reveal that the modified method is very simple and effective.

MSC:

45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, J. H., Homotopy perturbation technique, Comp. Meth. Appl. Mech. Engrg., 178, 257-262 (1999) · Zbl 0956.70017
[2] He, J. H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Internat. J. Non-linear Mech., 35, 37-43 (2000) · Zbl 1068.74618
[3] He, J. H., Homotopy perturbation method: A new non-linear analytical technique, Appl. Math. Comput., 135, 73-79 (2003) · Zbl 1030.34013
[4] He, J. H., Comparison of homotopy perturbation method and homotopy analysis method, Appl. Math. Comput., 156, 527-539 (2004) · Zbl 1062.65074
[5] He, J. H., The homotopy perturbation method for non-linear oscillators with discontinuities, Appl. Math. Comput., 151, 287-292 (2004) · Zbl 1039.65052
[6] He, J. H., Application of homotopy perturbation method to non-linear wave equations, Chaos Soliton Fractals, 26, 695-700 (2005) · Zbl 1072.35502
[7] He, J. H., Homotopy perturbation method for bifurcation of non-linear problems, Int. J. Non-linear Sci. Numer. Simul., 6, 207-208 (2005) · Zbl 1401.65085
[8] He, J. H., Periodic solutions and bifurcations of delay-differential equations, Phys. Lett. A, 347, 228-230 (2005) · Zbl 1195.34116
[9] He, J. H., Limit cycle and bifurcation of non-linear problems, Chaos Solitons Fractals, 26, 827-833 (2005) · Zbl 1093.34520
[10] He, J. H., Determination of limit cycles for strongly non-linear oscillators, Phys. Rev. Lett., 90 (2003), Art. No. 174301
[11] He, J. H., Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350, 87-88 (2006) · Zbl 1195.65207
[12] He, J. H., Asymptotology by homotopy perturbation method, Appl. Math. Comput., 156, 591-596 (2004) · Zbl 1061.65040
[13] Abbasbandy, S., Modified homotopy perturbation method for nonlinear equations and comparison with Adomian decomposition method, Appl. Math. Comput., 172, 431-438 (2006) · Zbl 1088.65043
[14] Cveticanin, L., Homotopy perturbation method for pure nonlinear differential equation, Chaos Solitons Fractals, 30, 1221-1230 (2006) · Zbl 1142.65418
[15] Siddiqui, A. M.; Mahmood, R.; Ghori, Q. K., Homotopy perturbation method for thin film flow of a third fluid down an inclined plane, Chaos Solitons Fractals, 35, 140-147 (2008) · Zbl 1135.76006
[16] Ozis, T.; Yildirim, A., A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity, Chaos Solitons Fractals, 34, 989-991 (2007)
[17] Ghorbani, A.; Saberi-Nadjafi, J., He’s homotopy perturbation method for calculating Adomian polynomials, Int. J. Non-linear Sci. Numer. Simul., 8, 229-232 (2007) · Zbl 1401.65056
[18] Ganji, D. D.; Sadighi, A., Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Non-linear Sci. Numer. Simul., 7, 411-418 (2006)
[19] Rafei, M.; Ganji, D. D., Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method, Int. J. Non-linear Sci. Numer. Simul., 7, 321-328 (2006) · Zbl 1160.35517
[20] Ariel, P. D.; Hayat, T.; Asghar, S., Homotopy perturbation method and axisymmetric flow over a stretching sheet, Int. J. Non-linear Sci. Numer. Simul., 7, 399-406 (2006)
[21] Beléndez, A.; Hernández, A.; Beléndez, T.; Fernández, E.; Alvarez, M. L.; Neipp, C., Application of He’s homotopy perturbation method to the Duffing-harmonic oscillator, Int. J. Non-linear Sci. Numer. Simul., 8, 79-88 (2007)
[22] Siddiqui, A.; Mahmood, R.; Ghori, Q., Thin film flow of a third on moving a belt by He’s homotopy perturbation method, Int. J. Nonlinear Sci. Numerer. Simul., 7, 15-26 (2006)
[23] Abbasbany, S., Application of He’s homotopy perturbation method for Laplace transform, Chaos Solitons Fractals, 30, 1206-1212 (2006) · Zbl 1142.65417
[24] Abbasbany, S., A numerical solution of Blasius equation by Adomian decomposition method and comparison with homotopy perturbation method, Chaos Solitons Fractals, 31, 257-260 (2007)
[25] Belendez, A.; Hernandez, A.; Belendez, T.; Neipp, C.; Marquez, A., Application of the homotopy perturbation method to the nonlinear pendulum, European J. Phys., 28, 93-104 (2007) · Zbl 1119.70017
[26] Ganji, D. D.; Sadighi, A., Application of He’s homotopy perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. Nonlinear Sci. Numerer. Simul., 7, 411-418 (2006)
[27] Ganji, D. D., The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys. Lett. A, 355, 337-341 (2006) · Zbl 1255.80026
[28] Ramos, J. I., Series approach to the Lane-Edmen equation and comparison with the homotopy perturbation method, Chaos Solitons Fractals (2006)
[29] Belendez, A.; Belendez, T.; Neipp, C.; Hernandez, A.; Alvarez, M. L., Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method, Chaos Solitons Fractals (2007) · Zbl 1197.65105
[30] Belendez, A.; Pascual, C.; Gallego, S.; Ortuno, M.; Neipp, C., Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of a \(x^{1 / 3}\) force nonlinear oscillator, Phys. Lett. A (2007) · Zbl 1209.65083
[31] Cai, X. C.; Wu, W. Y.; Li, M. S., Approximate period solution for a kind of nonlinear oscillator by He’s homotopy perturbation method, Int. J. Nonlinear Sci. Numerer. Simul., 7, 109-117 (2006)
[32] He, J. H., Comparison of homotopy perturbation method and homotopy analysis method, Appl. Math. Comput., 156, 527-539 (2004) · Zbl 1062.65074
[33] Abbasbandy, S., Application of He’s homotopy perturbation method to functional integral equations, Chaos Solitons Fractals, 31, 1243-1247 (2007) · Zbl 1139.65085
[34] Abbasbandy, S., Numerical solution of integral equation: Homotopy perturbation method and Adomian’s decomposition method, Appl. Math. Comput., 173, 493-500 (2006) · Zbl 1090.65143
[35] El-Shahed, M., Application of He’s homotopy perturbation method to Volterra’s integro-differential equation, Int. J. Non-linear Sci. Numer. Simul., 6, 163-168 (2005) · Zbl 1401.65150
[36] Chun, C., Integration using He’s homotopy perturbation method, Chaos Solitons Fractals, 34, 1130-1134 (2007) · Zbl 1142.65464
[37] Golbabai, A.; Keramati, B., Modified homotopy perturbation method for solving Fredholm integral equations, Chaos Solitons Fractals (2006) · Zbl 1115.65391
[38] Ghasemi, M.; Tavassoli Kajani, M.; Babolian, E., Application of He’s homotopy perturbation method to nonlinear integro-differential equations, Appl. Math. Comput., 188, 538-548 (2007) · Zbl 1118.65394
[39] He, J. H., Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20, 1141-1199 (2006) · Zbl 1102.34039
[41] He, J. H., New interpretation of homotopy perturbation method, Internat. J. Modern Phys. B, 20, 2561-2568 (2006)
[42] Ghorbani, A., Beyond Adomian polynomials: He polynomials, Chaos Solitons Fractals (2007) · Zbl 1197.65061
[43] Wazwaz, A. M., A First Course in Integral Equations (1997), World Scientific: World Scientific New Jersey
[44] Krasnov, M.; Kiselev, A.; Makarenko, G., Problems and Exercises in Integral Equations (1971), Mir Publishers: Mir Publishers Moscow · Zbl 0217.15601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.