×

The Atkinson theorem in Hilbert \(C^{\ast}\)-modules over \(C^{\ast}\)-algebras of compact operators. (English) Zbl 1155.46026

Summary: The concept of unbounded Fredholm operators on Hilbert \(C^{\ast}\)-modules over an arbitrary \(C^{\ast}\)-algebra is discussed and the Atkinson theorem is generalized for bounded and unbounded Fredholm operators on Hilbert \(C^{\ast}\)-modules over \(C^{\ast}\)-algebras of compact operators. In the framework of Hilbert \(C^{\ast}\)-modules over \(C^{\ast}\)-algebras of compact operators, the index of an unbounded Fredholm operator and the index of its bounded transform are the same.

MSC:

46L08 \(C^*\)-modules
47A53 (Semi-) Fredholm operators; index theories
PDF BibTeX XML Cite
Full Text: DOI arXiv EuDML

References:

[1] J. M. Garcia-Bondía, J. C. Várilly, and H. Figueroa, Elements of Non-Commutative Geometry, Birkhäuser, Boston, Mass, USA, 2000.
[2] N. E. Wegge-Olsen, k-Theory and C*-Algebras: A Friendly Approach, The Clarendon Press, Oxford University Press, New York, NY, USA, 1993. · Zbl 0780.46038
[3] E. C. Lance, Hilbert C*-Modules, vol. 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1995. · Zbl 0822.46080
[4] D. Bakić and B. Gulja\vs, “Hilbert C*-modules over C*-algebras of compact operators,” Acta Scientiarum Mathematicarum (Szegediensis), vol. 68, no. 1-2, pp. 249-269, 2002. · Zbl 1026.46039
[5] S. Baaj and P. Julg, “Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens,” Comptes Rendus des Séances de l/Académie des Sciences. Série I. Mathématique, vol. 296, no. 21, pp. 875-878, 1983. · Zbl 0551.46041
[6] B. Booss-Bavnbek, M. Lesch, and J. Phillips, “Unbounded fredholm operators and spectral flow,” Canadian Journal of Mathematics, vol. 57, no. 2, pp. 225-250, 2005. · Zbl 1085.58018
[7] M. Joachim, “Unbounded Fredholm operators and k-theory,” in High-Dimensional Manifold Topology, pp. 177-199, World Science Publishing, River Edge, NJ, USA, 2003. · Zbl 1049.46051
[8] M. Magajna, “Hilbert C*-modules in which all closed submodules are complemented,” Proceedings of the American Mathematical Society, vol. 125, no. 3, pp. 849-852, 1997. · Zbl 0865.46038
[9] G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston, Mass, USA, 1990. · Zbl 0714.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.