Li, Songxiao; Stević, Stevo Products of integral-type operators and composition operators between Bloch-type spaces. (English) Zbl 1155.47036 J. Math. Anal. Appl. 349, No. 2, 596-610 (2009). In [Comment. Math. Helv. 52, 591-602 (1977; Zbl 0369.30012)], Ch. Pommerenke introduced the following integral type operator \[ J_g f(z) = \int_0^z f(\xi) g'(\xi) \; d \xi \]for \(z \in \mathbb D\), a holomorphic map \(g: \mathbb D \to \mathbb C\) and \(f \in H(\mathbb D)\). The integral type operator \[ I_g f(z) = \int_0^z f'(\xi) g(\xi) \; d \xi, \quad z \in \mathbb D, \]is closely connected to \(J_g\) by the inequality \[ J_g f + I_g f = M_g f - f(0) g(0), \]where \(M_g\) is the multiplication operator given by \[ (M_g f)(z)= g(z) f(z). \]For an analytic self-map \(\varphi\) of \(\mathbb D\), the composition operator is defined by \(C_{\varphi} f= f \circ \varphi\) for \(f \in H(\mathbb D)\). This paper is devoted to the study of the following products of composition operators and integral-type operators \[ \begin{aligned} C_{\varphi} J_g(f)(z) &= \int_0^{\varphi(z)} f(\xi) g'(\xi) \,d \xi,\\ C_{\varphi} I_g(f)(z) &= \int_0^{\varphi(z)} f'(\xi) g(\xi) \, d \xi,\\ J_g C_{\varphi}(f)(z) &= \int_0^z (f \circ \varphi) (\xi) g'(\xi) \,d \xi,\\ I_g C_{\varphi}(f)(z) &= \int_0^z (f \circ \varphi)' (\xi) g(\xi) \, d \xi. \end{aligned} \] The authors characterize when such products acting between the \(\alpha\)-Bloch spaces \[ B^{\alpha} = \{f \in H(\mathbb D); \quad \| f\| _{B^{\alpha}} = | f(0)| + \sup_{z \in \mathbb D} (1-| z| ^2)^{\alpha} | f'(z)| < \infty\},\quad \alpha > 0, \]resp., the little \(\alpha\)-Bloch spaces\[ B_0^{\alpha}= \Bigl\{ f \in B^{\alpha}; \; \lim_{| z| \to 1} (1-| z| ^2)^{\alpha} | f'(z)| =0 \Bigr\},\quad \alpha > 0, \]are bounded, resp. compact. Reviewer: Elke Wolf (Paderborn) Cited in 68 Documents MSC: 47B38 Linear operators on function spaces (general) 30H05 Spaces of bounded analytic functions of one complex variable Keywords:integral operator; composition operator; Bloch space Citations:Zbl 0369.30012 PDF BibTeX XML Cite \textit{S. Li} and \textit{S. Stević}, J. Math. Anal. Appl. 349, No. 2, 596--610 (2009; Zbl 1155.47036) Full Text: DOI OpenURL References: [1] Aleman, A.; Cima, J.A., An integral operator on \(H^p\) and Hardy’s inequality, J. anal. math., 85, 157-176, (2001) · Zbl 1061.30025 [2] Avetisyan, K.L., Hardy – bloch type spaces and lacunary series on the polydisk, Glasgow math. J., 49, 2, 345-356, (2007) · Zbl 1123.32004 [3] Boe, B.; Nikolau, A., Interpolation by functions in the Bloch space, J. anal. math., 94, 171-194, (2004) · Zbl 1094.30042 [4] Chang, D.C.; Li, S.; Stević, S., On some integral operators on the unit polydisk and the unit ball, Taiwanese J. math., 11, 5, 1251-1286, (2007) · Zbl 1149.47026 [5] Chang, D.C.; Stević, S., Estimates of an integral operator on function spaces, Taiwanese J. math., 7, 3, 423-432, (2003) · Zbl 1052.47044 [6] Chang, D.C.; Stević, S., The generalized Cesàro operator on the unit polydisk, Taiwanese J. math., 7, 2, 293-308, (2003) · Zbl 1065.47033 [7] Clahane, D.; Stević, S., Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. inequal. appl., 2006, (2006), Article ID 61018, 11 pp · Zbl 1131.47018 [8] Cowen, C.C.; MacCluer, B.D., Composition operators on spaces of analytic functions, (1995), CRC Press Boca Raton, FL · Zbl 0873.47017 [9] Dunford, N.; Schwartz, J.T., Linear operators I, Interscience publishers, (1958), Jon Willey and Sons New York [10] Gauthier, P.M.; Xiao, J., Bibloch-type maps: existence and beyond, Complex var., 47, 8, 667-678, (2002) · Zbl 1026.30035 [11] Hornor, W.; Jamison, J.E., Isometries of some Banach spaces of analytic functions, Integral equations operator theory, 41, 401-425, (2001) · Zbl 0995.46012 [12] Hu, Z., Extended Cesàro operators on the Bloch space in the unit ball of \(\mathbb{C}^n\), Acta math. sci. ser. B engl. ed., 23, 4, 561-566, (2003) · Zbl 1044.47023 [13] Hu, Z., Extended Cesàro operators on mixed norm spaces, Proc. amer. math. soc., 131, 7, 2171-2179, (2003) · Zbl 1054.47023 [14] Hu, Z., Extended Cesàro operators on Bergman spaces, J. math. anal. appl., 296, 435-454, (2004) · Zbl 1072.47029 [15] Li, S.; Stević, S., Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral transforms spec. funct., 18, 7, 485-493, (2007) · Zbl 1131.47031 [16] Li, S.; Stević, S., Riemann – stieltjes operators on Hardy spaces in the unit ball of \(\mathbb{C}^n\), Bull. belg. math. soc. Simon stevin, 14, 621-628, (2007) · Zbl 1136.47023 [17] Li, S.; Stević, S., Riemann – stieltjes type integral operators on the unit ball in \(\mathbb{C}^n\), Complex var. elliptic funct., 52, 6, 495-517, (2007) · Zbl 1124.47022 [18] Li, S.; Stević, S., Compactness of riemann – stieltjes operators between \(F(p, q, s)\) and α-Bloch spaces, Publ. math. debrecen, 72, 1-2, 111-128, (2008) · Zbl 1164.47040 [19] Li, S.; Stević, S., Generalized composition operators on Zygmund spaces and Bloch type spaces, J. math. anal. appl., 338, 1282-1295, (2008) · Zbl 1135.47021 [20] Li, S.; Stević, S., Riemann – stieltjes operators between mixed norm spaces, Indian J. math., 50, 1, 177-188, (2008) · Zbl 1159.47012 [21] S. Li, S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, preprint, 2006, Bull. Belg. Math. Soc. Simon Stevin, in press [22] Madigan, K.; Matheson, A., Compact composition operators on the Bloch space, Trans. amer. math. soc., 347, 7, 2679-2687, (1995) · Zbl 0826.47023 [23] Ohno, S.; Stroethoff, K.; Zhao, R., Weighted composition operators between Bloch-type spaces, Rocky mountain J. math., 33, 1, 191-215, (2003) · Zbl 1042.47018 [24] Pommerenke, Ch., Schlichte funktionen und analytische funktionen von beschränkter mittlerer oszillation, Comment. math. helv., 52, 591-602, (1977) · Zbl 0369.30012 [25] Ramey, W.; Ullrich, D., Bounded Mean oscillation on Bloch pull-back, Math. anal., 291, 591-606, (1991) · Zbl 0727.32002 [26] Siskakis, A.G.; Zhao, R., A Volterra type operator on spaces of analytic functions, Contemp. math., 232, 299-311, (1999) · Zbl 0955.47029 [27] Stević, S., Cesàro averaging operators, Math. nachr., 248-249, 185-189, (2003) · Zbl 1024.47014 [28] Stević, S., The generalized libera transform on Hardy, Bergman and Bloch spaces on the unit polydisk, Z. anal. anwend., 21, 1, 179-186, (2003) · Zbl 1046.47026 [29] Stević, S., On an integral operator on the unit ball in \(\mathbb{C}^n\), J. inequal. appl., 1, 81-88, (2005) · Zbl 1074.47013 [30] Stević, S., Boundedness and compactness of an integral operator on a weighted space on the polydisc, Indian J. pure appl. math., 37, 6, 343-355, (2006) · Zbl 1121.47032 [31] Stević, S., Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. mat. zh., 48, 3, 694-706, (2007) · Zbl 1164.47331 [32] Tang, X., Extended Cesàro operators between Bloch-type spaces in the unit ball of \(\mathbb{C}^n\), J. math. anal. appl., 326, 2, 1199-1211, (2007) · Zbl 1117.47022 [33] Xiao, J., Riemann – stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London math. soc., 70, 2, 199-214, (2004) · Zbl 1064.47034 [34] Yamashita, S., Gap series and α-Bloch functions, Yokohama math. J., 28, 31-36, (1980) · Zbl 0467.30001 [35] Zhu, K., Spaces of holomorphic functions in the unit ball, Grad. texts in math., (2005), Springer This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.