Perrone, Domenico Corrected energy of the Reeb distribution of a 3-Sasakian manifold. (English) Zbl 1155.53027 Osaka J. Math. 45, No. 3, 615-627 (2008). In the paper under review, the author shows that the Reeb distribution on a spherical space form which admits a 3-Sasakian structure minimizes the corrected energy in the set of all integrable \(3\)-dimensional distributions. He also shows that the characteristic distribution of a compact twistor space over a quaternionic-Kähler manifold with positive scalar curvature is a minimum for the corrected energy in the set of all integrable 2-dimensional distributions \(\nu \) with curvature \(K(\nu )\leq 4\). Reviewer: Cihan Özgür (Balikesir) Cited in 1 Document MSC: 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) 53C20 Global Riemannian geometry, including pinching 53D10 Contact manifolds (general theory) Keywords:Sasakian manifold; corrected energy PDFBibTeX XMLCite \textit{D. Perrone}, Osaka J. Math. 45, No. 3, 615--627 (2008; Zbl 1155.53027) Full Text: Euclid References: [1] D.E. Blair: Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math. 203 , Birkhäuser, Boston, MA, 2002. · Zbl 1011.53001 [2] D.E. Blair and A. Turgut Vanli: Corrected energy of distributions for 3-Sasakian and normal complex contact manifolds , Osaka J. Math. 43 (2006), 193-200. · Zbl 1102.53030 [3] F. Brito: Total bending of flows with mean curvature correction , Differential Geom. Appl. 12 (2000), 157-163. · Zbl 0995.53023 · doi:10.1016/S0926-2245(00)00007-3 [4] P.M. Chacón, A.M. Naveira and J.M. Weston: On the energy of distributions, with application to the quaternionic Hopf fibrations , Monatsh. Math. 133 (2001), 281-294. · Zbl 0998.53022 · doi:10.1007/PL00010092 [5] P.M. Chacón and A.M. Naveira: Corrected energy of distributions on Riemannian manifolds , Osaka J. Math. 41 (2004), 97-105. · Zbl 1055.53021 [6] F.J. Carreras: Linear invariants of Riemannian almost product manifolds , Math. Proc. Cambridge Philos. Soc. 91 (1982), 99-106. · Zbl 0481.53033 · doi:10.1017/S0305004100059156 [7] B. Foreman: Complex contact manifolds and hyperkähler geometry , Kodai Math. J. 23 (2000), 12-26. · Zbl 1028.53049 · doi:10.2996/kmj/1138044153 [8] O. Gil-Medrano, J.C. González-Dávila and L. Vanhecke: Harmonicity and minimality of oriented distributions , Israel J. Math. 143 (2004), 253-279. · Zbl 1073.58007 · doi:10.1007/BF02803502 [9] S. Ishihara and M. Konishi: Real contact 3-structure and complex contact structure , Southeast Asian Bull. Math. 3 (1979), 151-161. · Zbl 0429.53026 [10] S. Ishihara and M. Konishi: Complex almost contact manifolds , Kodai Math. J. 3 (1980), 385-396. · Zbl 0455.53032 · doi:10.2996/kmj/1138036261 [11] T. Kashiwada: A note on a Riemannian space with Sasakian 3-structure , Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 1-2. · Zbl 0228.53033 [12] T. Kashiwada: On a contact 3-structure , Math. Z. 238 (2001), 829-832. · Zbl 1004.53058 · doi:10.1007/s002090100279 [13] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, II, Wiley-Interscience, New York, 1969. · Zbl 0175.48504 [14] J.J. Konderak: On sections of fibre bundles which are harmonic maps , Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42 ( 90 ) (1999), 341-352. · Zbl 0976.53069 [15] B. Korkmaz: Normality of complex contact manifolds , Rocky Mountain J. Math. 30 (2000), 1343-1380. · Zbl 0990.53080 · doi:10.1216/rmjm/1021477355 [16] C. LeBrun: Fano manifolds, contact structures, and quaternionic geometry , Internat. J. Math. 6 (1995), 419-437. · Zbl 0835.53055 · doi:10.1142/S0129167X95000146 [17] D. Perrone: Hypercontact metric three-manifolds , C.R. Math. Acad. Sci. Soc. R. Can. 24 (2002), 97-101. · Zbl 1039.53051 [18] S. Sasaki: Spherical space forms with normal contact metric 3-structure , J. Differential Geometry 6 (1971/72), 307-315. · Zbl 0245.53044 [19] G. Wiegmink: Total bending of vector fields on Riemannian manifolds , Math. Ann. 303 (1995), 325-344. · Zbl 0834.53034 · doi:10.1007/BF01460993 [20] C.M. Wood: On the energy of a unit vector field , Geom. Dedicata 64 (1997), 319-330. · Zbl 0878.58017 · doi:10.1023/A:1017976425512 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.