Rivière, Tristan Analysis aspects of Willmore surfaces. (English) Zbl 1155.53031 Invent. Math. 174, No. 1, 1-45 (2008). Author’s abstract: In the present paper, a new formulation for the Euler-Lagrange equation of the Willmore functional for immersed surfaces in \(\mathbb R^{m}\) is given as a nonlinear elliptic equation in divergence form, with non-linearities comprising only Jacobians. Letting \(\overrightarrow{H}\) be the mean curvature vector of the surface, the new formulation reads \(\mathcal{L}\overrightarrow{H}=0\), where \(\mathcal{L}\) is a well-defined locally invertible self-adjoint elliptic operator. Several consequences are studied. In particular, the long standing open problem asking for a meaning of the Willmore Euler-Lagrange equation for immersions having only \(L^2\)-bounded second fundamental form is solved. The regularity of weak Willmore immersions with \(L^2\)-bounded second fundamental form is also established. Its proof relies on the discovery of conservation laws which are preserved under weak convergence.A weak compactness result for Willmore surfaces with energy less than \(8\pi\) (the Li-Yau condition ensuring the surface is embedded) is proved, via a point removability result established for Willmore surfaces in \(\mathbb R^m\), thereby extending to arbitrary codimension the main result in [(*) E. Kuwert and R. Schätzle, Ann. Math. (2) 160, No. 1, 315–357 (2004; Zbl 1078.53007)]. Finally, from this point-removability result, the strong compactness of Willmore tori below the energy level \(8\pi\) is proved both in dimension \(3\) (this had already been settled in [(*)] and in dimension \(4\). Reviewer: Huafei Sun (Beijing) Cited in 2 ReviewsCited in 85 Documents MSC: 53C43 Differential geometric aspects of harmonic maps 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature 53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces Keywords:Willmore surface; Euler-Lagrange equation; point removability Citations:Zbl 1078.53007 × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Bernard, Y., Rivière, T.: Palais Smale sequences of the Willmore functional. In preparation (2008) [2] Blaschke, W.: Vorlesungen über Differential Geometrie III. Springer, Berlin (1929) · JFM 55.0422.01 [3] Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differ. Geom. 20(1), 23–53 (1984) · Zbl 0555.53002 [4] Chen, B.-Y.: Some conformal invariants of submanifolds and their applications. Boll. Unione Mat. Ital. (4) 10, 380–385 (1974) · Zbl 0321.53042 [5] Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl., IX. Sér 72(3), 247–286 (1993) · Zbl 0864.42009 [6] Federer, H.: Geometric Measure Theory. Springer, New York (1969) · Zbl 0176.00801 [7] Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002) · Zbl 1021.74024 · doi:10.1002/cpa.10048 [8] Hawking, S.W.: Gravitational radiation in an expanding universe. J. Math. Phys. 9, 598–604 (1968) · doi:10.1063/1.1664615 [9] Hélein, F.: Harmonic Maps, Conservation Laws, and Moving Frames. Camb. Tracts Math., vol. 150. Cambridge University Press, Cambridge (2002) · Zbl 1010.58010 [10] Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Nat.forsch. A C28, 693–703 (1973) [11] Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957) · Zbl 0080.15001 · doi:10.1007/BF02564570 [12] Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 1997(20), 1045–1058 (1997) · Zbl 0905.53043 · doi:10.1155/S1073792897000664 [13] Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001) · Zbl 1035.53092 [14] Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002) · Zbl 1029.53082 [15] Kuwert, E., Schätzle, R.: Removability of point singularities of Willmore surfaces. Ann. Math. (2) 160(1), 315–357 (2004) · Zbl 1078.53007 · doi:10.4007/annals.2004.160.315 [16] Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982) · Zbl 0503.53042 · doi:10.1007/BF01399507 [17] Montiel, S.: Willmore two-spheres in the four-sphere. Trans. Am. Math. Soc. 352(10), 4469–4486 (2000) · Zbl 0961.53035 · doi:10.1090/S0002-9947-00-02571-X [18] Müller, S., Sverák, V.: On surfaces of finite total curvature. J. Differ. Geom. 42(2), 229–258 (1995) · Zbl 0853.53003 [19] Pinkall, U., Sterling, I.: Willmore surfaces. Math. Intell. 9(2), 38–43 (1987) · Zbl 0616.53049 · doi:10.1007/BF03025897 [20] Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2006) · Zbl 1128.58010 · doi:10.1007/s00222-006-0023-0 [21] Rusu, R.: An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7, 229–239 (2005) · Zbl 1210.35149 · doi:10.4171/IFB/122 [22] Simon, L.: Lectures on Geometric Measure Theory. Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University, Centre for Mathematical Analysis, Canberra (1983) · Zbl 0546.49019 [23] Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993) · Zbl 0848.58012 [24] Simonett, G.: The Willmore flow near spheres. Differ. Integral Equ. 14(8), 1005–1014 (2001) · Zbl 1161.35429 [25] Tartar, L.: Remarks on oscillations and Stokes’ equation. In: Macroscopic Modelling of Turbulent Flows (Nice, 1984). Lect. Notes Phys., vol. 230, pp. 24–31. Springer, Berlin (1985) [26] Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1(3), 479–500 (1998) · Zbl 0929.46028 [27] Thomsen, G.: Über konforme Geometrie, I. Grundlagen der konformen Flächentheorie. Abh. Math. Semin. Univ. Hamburg, pp. 31–56 (1923) · JFM 49.0530.02 [28] Toro, T.: Surfaces with generalized second fundamental form in L2 are Lipschitz manifolds. J. Differ. Geom. 39, 65–101 (1994) · Zbl 0806.53020 [29] Toro, T.: Geometric conditions and existence of bilipschitz parametrisations. Duke Math. J. 77(1), 193–227 (1995) · Zbl 0847.42011 · doi:10.1215/S0012-7094-95-07708-4 [30] Weiner, J.: On a problem of Chen, Willmore, et al. Indiana Univ. Math. J. 27(1), 19–35 (1978) · doi:10.1512/iumj.1978.27.27003 [31] Wente, H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1969) · Zbl 0181.11501 · doi:10.1016/0022-247X(69)90156-5 [32] White, J.H.: A global invariant of conformal mappings in space. Proc. Am. Math. Soc. 38, 162–164 (1973) · Zbl 0256.53008 · doi:10.1090/S0002-9939-1973-0324603-1 [33] Willmore, T.J.: Note on embedded surfaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 11B, 493–496 (1965) [34] Willmore, T.J.: Riemannian Geometry. Oxford University Press, New York (1997) · Zbl 0797.53002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.