Mecke, J.; Nagel, W.; Weiss, V. Length distributions of edges in planar stationary and isotropic STIT tessellations. (English. Russian original) Zbl 1155.60005 J. Contemp. Math. Anal., Armen. Acad. Sci. 42, No. 1, 28-43 (2007); translation from Izv. Nats. Akad. Nauk Armen., Mat. 42, No. 1, 39-60 (2007). The iteration operation for a planar tessellation is defined by subdividing its cells using a sequence of further iid tessellations. If the rescaled result of this (possibly iterated) operation coincides in distribution with the original tessellation \(\mathcal{Y}\), then \(\mathcal{Y}\) is said to be stable with respect to iteration (STIT) [see W. Nagel and V. Weiss, Adv. Appl. Probab. 37, 859–883 (2005; Zbl 1098.60012)].The authors recall the construction of STIT tessellations in bounded windows, discuss properties of mean values and then proceed to study length distributions for segments of three different types that appear as edges of STIT tessellations. The authors derive explicit formulae for their length distributions in the stationary and isotropic case and discuss various properties of the obtained length distributions. Reviewer: Ilya S. Molchanov (Bern) Cited in 6 ReviewsCited in 13 Documents MSC: 60D05 Geometric probability and stochastic geometry 52A22 Random convex sets and integral geometry (aspects of convex geometry) Keywords:random tessellation; iteration of tessellations; stable tessellation; edge Citations:Zbl 1098.60012 PDFBibTeX XMLCite \textit{J. Mecke} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 42, No. 1, 28--43 (2007; Zbl 1155.60005); translation from Izv. Nats. Akad. Nauk Armen., Mat. 42, No. 1, 39--60 (2007) Full Text: DOI References: [1] Ambartzumian, R.V. (1990). Factorization calculus and geometric probability. Cambridge University Press, Cambridge. · Zbl 0715.53049 [2] Mackisack, M.S. and Miles, R.E. (1996). Homogeneous rectangular tessellations. Adv. Appl. Prob. (SGSA) 28, 993–1013. · Zbl 0872.60011 · doi:10.1017/S000186780002752X [3] Mathéron, G. (1975). Random sets and integral geometry. John Wiley & Sons, New York, London. [4] Mecke, J. (1975). Invarianzeigenschaften allgemeiner Palmsche Maße. Math. Nachr. 65, 335–344. · Zbl 0301.28014 · doi:10.1002/mana.19750650129 [5] Mecke, J. (1980). Palm methods for stationary random mosaics. In Combinatorial Principles in Stochastic Geometry (ed. R.V. Ambartzumjan). Armenian Academy of Sciences Publ., Erevan, 124–132. · Zbl 0471.60019 [6] Mecke, J. (1984). Parametric representation of mean values for stationary random mosaics. Math. Operationsf. Statist., Ser. Statistics 15, 437–442. · Zbl 0547.60019 [7] Mecke, J., Schneider, R. Stoyan, D., Weil, W. (1990). Stochastische Geometrie. Birkhäuser, Basel, Boston, Berlin. · Zbl 0728.60016 [8] Møller, J. (1989). Random tessellations in \(\mathbb{R}\)d. Adv. Appl. Prob. 24, 37–73. · Zbl 0684.60007 [9] Nagel, W. and Weiss, V. (2003). Limits of sequences of stationary planar tessellations. Adv. Appl. Prob. (SGSA) 35, 123–138. · Zbl 1023.60015 · doi:10.1017/S0001867800012118 [10] Nagel, W. and Weiss, V. (2004). Crack STIT tessellations – existence and uniqueness of tessellations that are stable with respect to iteration. Izvestija Akademii Nauk Armenii. Matematika, [Journal of Contemporary Math. Anal. (Armenian Academy of Sciences)], 39, 84–114. [11] Nagel, W. and Weiss, V. (2005). The crack tessellations – characterization of the stationary random tessellations which are stable with respect to iteration. Adv. Appl. Prob. (SGSA) 37, 859–883. · Zbl 1098.60012 · doi:10.1017/S0001867800000574 [12] Nagel, W. and Weiß, V. Some geometric features of Crack STIT tessellations in the plane. submitted to Rendiconti del Circolo Mathematico di Plaermo. [13] Schneider, R. and Weil, W. (2000). Stochastische Geometrie. B.G. Teubner, Stuttgart, Leipzig. [14] Stoyan, D., Kendall, W. S., and Mecke, J. (1995). Stochastic Geometry and its Applications. 2nd edn. Wiley, Chichester. · Zbl 0838.60002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.