×

A method of moments estimator of tail dependence. (English) Zbl 1155.62017

Summary: In the world of multivariate extremes, estimation of the dependence structure still presents a challenge and an interesting problem. A procedure for the bivariate case is presented that opens the road to a similar way of handling the problem in a truly multivariate setting. We consider a semi-parametric model in which the stable tail dependence function is parametrically modeled. Given a random sample from a bivariate distribution function, the problem is to estimate the unknown parameter. A method of moments estimator is proposed where a certain integral of a nonparametric, rank-based estimator of the stable tail dependence function is matched with the corresponding parametric version. Under very weak conditions, the estimator is shown to be consistent and asymptotically normal. Moreover, a comparison between the parametric and nonparametric estimators leads to a goodness-of-fit test for the semiparametric model. The performance of the estimator is illustrated for a discrete spectral measure that arises in a factor-type model and for which likelihood-based methods break down. A second example is that of a family of stable tail dependence functions of certain meta-elliptical distributions.

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62G10 Nonparametric hypothesis testing
62G32 Statistics of extreme values; tail inference
62H12 Estimation in multivariate analysis
62F10 Point estimation

Software:

ismev
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beirlant, J., Goegebeur, Y., Segers, J. and Teugels, J. (2004)., Statistics of Extremes: Theory and Applications . Chichester: Wiley. · Zbl 1070.62036 · doi:10.1002/0470012382
[2] Bingham, N.C., Goldie, C.M. and Teugels, J.L. (1987)., Regular Variation . Cambridge: Cambridge Univ. Press. · Zbl 0617.26001
[3] Billingsley, P. (1968)., Convergence of Probability Measures . New York: Wiley. · Zbl 0172.21201
[4] Coles, S.G. (2001)., An Introduction to Statistical Modeling of Extreme Values . London: Springer. · Zbl 0980.62043
[5] Coles, S.G. and Tawn, J.A. (1991). Modelling extreme multivariate events., J. Roy. Statist. Soc. Ser. B 53 377-392. JSTOR: · Zbl 0800.60020
[6] Drees, H. and Huang, X. (1998). Best attainable rates of convergence for estimates of the stable tail dependence function., J. Multivariate Anal. 64 25-47. · Zbl 0953.62046 · doi:10.1006/jmva.1997.1708
[7] Einmahl, J.H.J., de Haan, L. and Li, D. (2006). Weighted approximations of tail copula processes with application to testing the bivariate extreme value condition., Ann. Statist. 34 1987-2014. · Zbl 1246.60051 · doi:10.1214/009053606000000434
[8] Falk, M., Hüsler, J. and Reiss, R.-D. (2004)., Laws of Small Numbers: Extremes and Rare Events . Basel: Birkhäuser. · Zbl 1083.60003
[9] Fang, H.-B., Fang, K.-T. and Kotz, S. (2002). The meta-elliptical distributions with given marginals., J. Multivariate Anal. 82 1-16. · Zbl 1002.62016 · doi:10.1006/jmva.2001.2017
[10] Galambos, J. (1987)., The Asymptotic Theory of Extreme Order Statistics . Malaber: Krieger. · Zbl 0634.62044
[11] Geluk, J.L., de Haan, L. and de Vries, C.G. (2007). Weak & strong financial fragility. Tinbergen Institute Discussion Paper, 2007-023/2.
[12] Genest, C., Favre, A.-C., Béliveau, J. and Jacques, C. (2007). Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data., Water Resources Research 43 W09401 DOI:10.1029/2006WR005275.
[13] de Haan, L. and Ferreira, A. (2006)., Extreme Value Theory: An Introduction . Berlin: Springer. · Zbl 1101.62002
[14] de Haan, L., Neves, C. and Peng, L. (2008). Parametric tail copula estimation and model testing., J. Multivariate Anal. · Zbl 1141.62011 · doi:10.1016/j.jmva.2007.08.003
[15] Huang, X. (1992). Statistics of bivariate extreme values. Ph.D. thesis, Erasmus Univ. Rotterdam, Tinbergen Institute Research Series, 22.
[16] Hult, H. and Lindskog, F. (2002). Multivariate extremes, aggregation and dependence in elliptical distributions., Adv. in Appl. Probab. 34 587-608. · Zbl 1023.60021 · doi:10.1239/aap/1033662167
[17] Joe, H., Smith, R.L. and Weissman, I. (1992). Bivariate threshold methods for extremes., J. Roy. Statist. Soc. Ser. B 54 171-183. JSTOR: · Zbl 0775.62083
[18] Klüppelberg, C., Kuhn, G. and Peng, L. (2007). Estimating tail dependence of elliptical distributions., Bernoulli 13 229-251. · Zbl 1111.62048 · doi:10.3150/07-BEJ6047
[19] Klüppelberg, C., Kuhn, G. and Peng, L. (2008). Semi-parametric models for the multivariate tail dependence function - the asymptotically dependent case., Scand. J. Statist. · Zbl 1195.62070
[20] Kotz, S. and Nadarajah, S. (2000)., Extreme Value Distributions . London: Imperial College Press. · Zbl 0960.62051
[21] Ledford, A.W. and Tawn, J.A. (1996). Statistics for near independence in multivariate extreme values., Biometrika 83 169-187. JSTOR: · Zbl 0865.62040 · doi:10.1093/biomet/83.1.169
[22] Resnick, S. (1987)., Extreme Values, Regular Variation and Point Processes . New York: Springer. · Zbl 0633.60001
[23] Smith, R.L. (1994). Multivariate threshold methods. In, Extreme Value Theory and Applications (J. Galambos, J. Lechner and E. Simiu, eds.) 225-248. Norwell: Kluwer.
[24] Tiago de Oliveira, J. (1980). Bivariate extremes: Foundations and statistics. In, Multivariate Analysis V (P.R. Krishnaiah, ed.) 349-366. Amsterdam: North-Holland. · Zbl 0431.62029
[25] Tiago de Oliveira, J. (1989). Statistical decision for bivariate extremes. In, Extreme Value Theory: Proceedings, Oberwolfach 1987. Lecture Notes in Statist. (J. Hüsler and R.D. Reiss, eds.) 51 246-261. Berlin: Springer. · Zbl 0672.62037
[26] van der Vaart, A.W. (1998)., Asymptotic Statistics . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[27] van der Vaart, A.W. and Wellner, J.A. (1996)., Weak Convergence and Empirical Processes . New York: Springer. · Zbl 0862.60002
[28] Vervaat, W. (1972). Functional central limit theorems for processes with positive drift and their inverses., Z. Wahrsch. Verw. Gebiete 23 249-253. · Zbl 0238.60018 · doi:10.1007/BF00532510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.