×

Testing for changes in polynomial regression. (English) Zbl 1155.62027

Summary: We consider a nonlinear polynomial regression model in which we wish to test the null hypothesis of structural stability of the regression parameters against the alternative of a break at an unknown time. We derive the extreme value distribution of a maximum-type test statistic which is asymptotically equivalent to the maximally selected likelihood ratio. The resulting test is easy to apply and has good size and power, even in small samples.

MSC:

62G08 Nonparametric regression and quantile regression
62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
62G32 Statistics of extreme values; tail inference
62E20 Asymptotic distribution theory in statistics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Albin, J.M.P. (1990). On extremal theory for stationary processes., Ann. Probab. 18 92-128. · Zbl 0704.60029
[2] Albin, J.M.P. (1992). On the general law of iterated logarithm with application to selfsimilar processes and to Gaussian processes in, \Bbb R m and Hilbert space. Stochastic Process. Appl. 41 1-31. · Zbl 0778.60022
[3] Albin, J.M.P. (2001). On extremes and streams of upcrossings., Stochastic Process. Appl. 94 271-300. · Zbl 1053.60052
[4] Albin, J.M.P. and Jarušková, D. (2003). On a test statistic for linear trend., Extremes 6 247-258. · Zbl 1050.62085
[5] Andrews, D.W.K. (1993). Tests for parameter instability and structural change with unknown change point., Econometrica 61 821-856. JSTOR: · Zbl 0795.62012
[6] Aue, A., Berkes, I. and Horváth, L. (2006). Strong approximation for the sums of squares of augmented GARCH sequences., Bernoulli 12 583-608. · Zbl 1125.62092
[7] Aue, A., Horváth, L. and Hušková, M. (2007). Extreme value theory for stochastic integrals of Legendre polynomials., · Zbl 1170.60023
[8] Bai, J., Lumsdaine, R.L. and Stock, J.H. (1998). Testing for and dating common breaks in multivariate time series., Rev. Economic Studies 65 394-432. JSTOR: · Zbl 0910.90074
[9] Banerjee, A. and Urga, G. (2005). Modeling structural breaks, long memory and stock market volatility: An overview., J. Econometrics 129 1-34. · Zbl 1335.00139
[10] Csörgő, M. and Horváth, L. (1997)., Limit Theorems in Change-Point Analysis . Chichester: Wiley. · Zbl 0884.62023
[11] Csörgő, M. and Révész, P. (1981)., Strong Approximations in Probability and Statistics . New York: Academic Press. · Zbl 0539.60029
[12] Dufour, J.-M. and Ghysels, E. (1996). Editor’s introduction. Recent developments in the econometrics of structural change., J. Econometrics 70 1-8. · Zbl 0834.00024
[13] Eberlein, E. (1986). On strong invariance principles under dependence assumptions., Ann. Probab. 14 260-270. · Zbl 0589.60031
[14] Finkenstaedt, B. and Rootzén, H. (2003)., Extreme Values in Finance , Telecommunications and the Environment . Boca Raton, FL: Chapman and Hall. · Zbl 1020.00022
[15] Hansen, B.E. (2000). Testing for structural change in conditional models., J. Econometrics 97 93-115. · Zbl 1122.62326
[16] Hawkins, D.L. (1989). A U-I approach to retrospective testing for shifting parameters in a linear model., Comm. Statist. Theory Methods 18 3117-3134. · Zbl 0696.62287
[17] Horváth, L. (1995). Detecting changes in linear regressions., Statistics 26 189-208. · Zbl 0812.62074
[18] Hušková, M. and Picek, J. (2005). Bootstrap in detection of changes in linear regression., Sankhyā : Indian J. Statist. 67 1-27. · Zbl 1193.62111
[19] Jandhyala, V.K. (1993). A property of partial sums of regression least squares residuals and its applications., J. Statist. Plann. Inference 37 317-326. · Zbl 0797.62054
[20] Jandhyala, V.K. and MacNeill, I.B. (1989). Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times., Stochastic Process. Appl. 33 309-323. · Zbl 0679.62056
[21] Jandhyala, V.K. and MacNeill, I.B. (1997). Iterated partial sum sequences of regression residuals and tests for changepoints with continuity constraints., J. Roy. Statist. Soc. Ser. B 59 147-156. JSTOR: · Zbl 0884.62071
[22] Jarušková, D. (1998). Testing appearance of linear trend., J. Statist. Plann. Inference 70 263-276. · Zbl 0938.62071
[23] Jarušková, D. (1999). Testing appearance of polynomial trend., Extremes 2 25-37. · Zbl 0938.62096
[24] Kuang, C.-M. (1998). Tests for changes in models with a polynomial trend., J. Econometrics 84 75-91. · Zbl 0905.62120
[25] Kuang, C.-M. and Hornik, K. (1995). The generalized fluctuation test: A unifying view., Econometric Rev. 14 135-161. · Zbl 0832.62085
[26] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983)., Extremes and Related Properties of Random Sequences and Processes . New York: Springer. · Zbl 0518.60021
[27] MacNeill, I.B. (1978). Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times., Ann. Statist. 6 422-433. · Zbl 0375.62064
[28] Perron, P. (2006). Dealing with structural breaks. In, Palgrave Handbook of Econometrics 1 . Econometric Theory (K. Patterson and T.C. Mills, eds.) 278-352. London: Macmillan.
[29] Qu, Z. and Perron, P. (2007). Estimating and testing multiple structural changes in multivariate regressions., Econometrica 75 459-502. · Zbl 1132.91555
[30] Quandt, R.E. (1958). The estimation of the parameters of a linear regression system obeying two separate regimes., J. Amer. Statist. Assoc. 53 873-880. JSTOR: · Zbl 0116.37304
[31] Quandt, R.E. (1960). Tests of hypothesis that a linear regression system obeys two separate regimes., J. Amer. Statist. Assoc. 55 324-330. JSTOR: · Zbl 0095.13602
[32] Rao, C.R. (1973)., Linear Statistical Inference and Its Applications , 2nd ed. London: Wiley. · Zbl 0256.62002
[33] Shao, Q.M. (1993). Almost sure invariance principle for mixing sequences of random variables., Stochastic Process. Appl. 48 319-334. · Zbl 0793.60038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.