zbMATH — the first resource for mathematics

Support points of locally optimal designs for nonlinear models with two parameters. (English) Zbl 1155.62053
Summary: We propose a new approach for identifying the support points of a locally optimal design when the model is a nonlinear model. In contrast to the commonly used geometric approach, we use an approach based on algebraic tools. Considerations are restricted to models with two parameters, and the general results are applied to often used special cases, including logistic, probit, double exponential and double reciprocal models for binary data, a loglinear Poisson regression model for count data, and the Michaelis-Menten model. The approach, which is also of value for multi-stage experiments, works both with constrained and unconstrained design regions and is relatively easy to implement.

62K05 Optimal statistical designs
62J12 Generalized linear models (logistic models)
Full Text: DOI Euclid arXiv
[1] Abdelbasit, K. M. and Plackett, R. L. (1983). Experimental design for binary data. J. Amer. Statist. Assoc. 78 90-98. JSTOR: · Zbl 0501.62071
[2] Agin, M. and Chaloner, K. (1999). Optimal Bayesian design for a logistic regression model: Geometric and algebraic approaches. In Multivariate Analysis, Design of Experiments and Survey Sampling (S. Ghosh, ed.) 609-624. Dekker, New York. · Zbl 0943.62029
[3] Agresti, A. (2002). Categorical Data Analysis , 2nd ed. Wiley, New York. · Zbl 1018.62002
[4] Biedermann, S., Dette, H. and Zhu, W. (2006). Geometric construction of optimal designs for dose-response models with two parameters. J. Amer. Statist. Assoc. 101 747-759. · Zbl 1119.62348
[5] Chaloner, K. and Larntz, K. (1989). Optimal Bayesian design applied to logistic regression experiments. J. Statist. Plann. Inference 21 191-208. · Zbl 0666.62073
[6] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273-304. · Zbl 0955.62617
[7] Dette, H. and Biedermann, S. (2003). Robust and efficient designs for the Michaelis-Menten model. J. Amer. Statist. Assoc. 98 679-686. · Zbl 1040.62065
[8] Dette, H. and Haines, L. M. (1994). E -optimal designs for linear and nonlinear models with two parameters. Biometrika 81 739-754. JSTOR: · Zbl 0816.62055
[9] Dette, H. and Wong, W. K. (1999). E -optimal designs for the Michaelis-Menten model. Statist. Probab. Lett. 44 405-408. · Zbl 0940.62066
[10] Dror, H. A. and Steinberg, D. M. (2006). Robust experimental design for multivariate generalized linear models. Technometrics 48 520-529.
[11] Elfving, G. (1952). Optimum allocation in linear regression theory. Ann. Math. Statistics 23 255-262. · Zbl 0047.13403
[12] Ford, I., Torsney, B. and Wu, C. F. J. (1992). The use of a canonical form in the construction of locally optimal designs for nonlinear problems. J. Roy. Statist. Soc. Ser. B 54 569-583. JSTOR: · Zbl 0774.62080
[13] Hedayat, A. S., Yan, B. and Pezzuto, J. (1997). Modeling and identifying optimum designs for fitting dose-response curves based on raw optical density data. J. Amer. Statist. Assoc. 92 1132-1140. JSTOR: · Zbl 0889.62064
[14] Hedayat, A. S., Yan, B. and Pezzuto, J. (2002). Optimum designs for estimating ED p based on raw optical density data. J. Statist. Plann. Inference 104 161-174. · Zbl 0988.62046
[15] Hedayat, A. S., Zhong, J. and Nie, L. (2004). Optimal and efficient designs for 2-parameter nonlinear models. J. Statist. Plann. Inference 124 205-217. · Zbl 1095.62087
[16] Khuri, A. I., Mukherjee, B., Sinha, B. K. and Ghosh, M. (2006). Design issues for generalized linear models: A review. Statist. Sci. 21 376-399. · Zbl 1246.62168
[17] Kiefer, J. and Wolfowitz, J. (1960). The equivalence of two extremum problems. Canadian J. Math. 12 363-366. · Zbl 0093.15602
[18] Mathew, T. and Sinha, B. K. (2001). Optimal designs for binary data under logistic regression. J. Statist. Plann. Inference 93 295-307. · Zbl 0965.62061
[19] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models , 2nd ed. Chapman and Hall, London. · Zbl 0744.62098
[20] McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear, and Mixed Models . Wiley, New York. · Zbl 0964.62061
[21] Minkin, S. (1987). Optimal designs for binary data. J. Amer. Statist. Assoc. 82 1098-1103. JSTOR:
[22] Minkin, S. (1993). Experimental design for clonogenic assays in chemotherapy. J. Amer. Statist. Assoc. 88 410-420. JSTOR:
[23] Pukelsheim, F. and Torsney, B. (1991). Optimal weights for experimental designs on linearly independent support points. Ann. Statist. 19 1614-1625. · Zbl 0729.62063
[24] Silvey, S. D. (1980). Optimal Design . Chapman and Hall, London. · Zbl 0468.62070
[25] Sitter, R. R. and Forbes, B. E. (1997). Optimal two-stage designs for binary response experiments. Statist. Sinica 7 941-955. · Zbl 1067.62562
[26] Sitter, R. R. and Wu, C. F. J. (1993a). Optimal designs for binary response experiments: Fieller, D , and A criteria. Scand. J. Statist. 20 329-341. · Zbl 0790.62080
[27] Sitter, R. R. and Wu, C. F. J. (1993b). On the accuracy of Fieller intervals for binary response data. J. Amer. Statist. Assoc. 88 1021-1025. · Zbl 0800.62180
[28] Yang, M. (2006). A -optimal designs for generalized linear model with two parameters. J. Statist. Plann. Inference 38 624-641. · Zbl 1138.62044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.