×

Proportional hazards models with continuous marks. (English) Zbl 1155.62075

Summary: For time-to-event data with finitely many competing risks, the proportional hazards model has been a popular tool for relating the cause-specific outcomes to covariates [R. L. Prentice et al., Biometrics 34, 541–554 (1978; Zbl 0392.62088)]. This article studies an extension of this approach to allow a continuum of competing risks, in which the cause of failure is replaced by a continuous mark only observed at the failure time.
We develop inference for the proportional hazards model in which the regression parameters depend nonparametrically on the mark and the baseline hazard depends nonparametrically on both time and mark. This work is motivated by the need to assess HIV vaccine efficacy, while taking into account the genetic divergence of infecting HIV viruses in trial participants from the HIV strain that is contained in the vaccine, and adjusting for covariate effects. Mark-specific vaccine efficacy is expressed in terms of one of the regression functions in the mark-specific proportional hazards model. The new approach is evaluated in simulations and applied to the first HIV vaccine efficacy trial.

MSC:

62N03 Testing in survival analysis and censored data
62N01 Censored data models
62P10 Applications of statistics to biology and medical sciences; meta analysis
62N02 Estimation in survival analysis and censored data
62G20 Asymptotic properties of nonparametric inference
62G10 Nonparametric hypothesis testing
60F05 Central limit and other weak theorems

Citations:

Zbl 0392.62088

Software:

timereg

References:

[1] Aalen, O. O. and Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations. Scand. J. Statist. 5 141-150. · Zbl 0383.62058
[2] Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics . Springer, New York.
[3] Cai, Z. and Sun, Y. (2003). Local linear estimation for time-dependent coefficients in Cox’s regression models. Scand. J. Statist. 30 93-111. · Zbl 1034.62096 · doi:10.1111/1467-9469.00320
[4] Flynn, N. M., Forthal, D. N., Harro, C. D., Judson, F. N., Mayer, K. H., Para, M. F. and The rgp120 HIV Vaccine Study Group (2005). Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infectious Diseases 191 654-665.
[5] Gilbert, P. B., McKeague, I. W. and Sun, Y. (2008). The two-sample problem for failure rates depending on a continuous mark: An application to vaccine efficacy. Biostatistics 9 263-276. · Zbl 1143.62078 · doi:10.1093/biostatistics/kxm028
[6] Graham, B. S. (2002). Clinical trials of HIV vaccines. Annual Review of Medicine 53 207-221.
[7] Huang, Y. and Louis, T. A. (1998). Nonparametric estimation of the joint distribution of survival time and mark variables. Biometrika 85 785-798. JSTOR: · Zbl 0921.62035 · doi:10.1093/biomet/85.4.785
[8] Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data . Wiley, New York. · Zbl 0504.62096
[9] Lin, D. Y., Wei, L. J. and Ying, Z. (1993). Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika 80 557-572. JSTOR: · Zbl 0788.62094 · doi:10.1093/biomet/80.3.557
[10] Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data . Springer, New York. · Zbl 1096.62119 · doi:10.1007/0-387-33960-4
[11] Nabel, G. J. (2001). Challenges and opportunities for development of an AIDS vaccine. Nature 410 1002-1007.
[12] Nickle, D. C., Heath, L., Jensen, M. A., Gilbert, P. B., Kosakovsky Pond, S. L. K. and Mullins, J. I. (2005). Amino acid substitution matrices for HIV-1 subtype B. Technical report, Univ. Washington.
[13] Olschewski, M. and Schumacher, M. (1990). Statistical analysis of quality of life data in cancer clinical trials. Statistics in Medicine 9 749-763.
[14] Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Fluornoy, N., Farewell, V. T. and Breslow, N. E. (1978). The analysis of failure times in the presence of competing risks. Biometrics 34 541-554. · Zbl 0392.62088 · doi:10.2307/2530374
[15] Schumacher, M. (1984). Two-sample tests of Cramér-von Mises and Kolmogorov-Smirnov type for randomly censored data. Internat. Statist. Rev. 52 263-281. JSTOR: · Zbl 0569.62038 · doi:10.2307/1403046
[16] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics . Wiley, New York. · Zbl 1170.62365
[17] Sun, Y. and Wu, H. (2005). Semiparametric time-varying coefficients regression model for longitudinal data. Scand. J. Statist. 32 21-47. · Zbl 1091.62088 · doi:10.1111/j.1467-9469.2005.00413.x
[18] Tsiatis, A. A. (1975). A nonidentifiability aspect of the problem of competing risks. Proc. Natl. Acad. Sci. USA 72 20-22. JSTOR: · Zbl 0299.62066 · doi:10.1073/pnas.72.1.20
[19] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[20] UNAIDS (Joint United Nations Programme for HIV/AIDS) (2004). AIDS Epidemic Update 2004.
[21] Wyatt, R., Kwong, P. D., Desjardins, E., Sweet, R. W., Robinson, J., Hendrickson, W. A. and Sodroski, J. G. (1998). The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393 705-711.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.