zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational homotopy perturbation method for solving higher dimensional initial boundary value problems. (English) Zbl 1155.65082
Summary: We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
34G25Evolution inclusions
WorldCat.org
Full Text: DOI EuDML
References:
[1] W. Miller, Jr., “Symmetries of differential equations. The hypergeometric and Euler-Darboux equations,” SIAM Journal on Mathematical Analysis, vol. 4, no. 2, pp. 314-328, 1973. · Zbl 0254.35080 · doi:10.1137/0504030
[2] R. Wilcox, “Closed-form solution of the differential equation ((\partial 2/\partial x\partial y)+ax(\partial /\partial x)+by(\partial /\partial y)+cxy+(\partial /\partial t))P=0 by normal-ordering exponential operators,” Journal of Mathematical Physics, vol. 11, pp. 1235-1237, 1970. · Zbl 0191.39603 · doi:10.1063/1.1665252
[3] A. R. Manwell, The Tricomi Equation with Applications to the Theory of Plane Transonic Flow, vol. 35 of Research Notes in Mathematics, Pitman, London, UK, 1979. · Zbl 0407.76034
[4] N. Nirmala, M. J. Vedan, and B. V. Baby, “A variable coefficient Korteweg-de Vries equation: similarity analysis and exact solution-II,” Journal of Mathematical Physics, vol. 27, no. 11, pp. 2644-2646, 1986. · Zbl 0632.35062 · doi:10.1063/1.527283
[5] S. Iyanaga and Y. Kawada, Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge, Mass, USA, 1962. · Zbl 0444.00028
[6] A. A. Soliman, “A numerical simulation and explicit solutions of KdV-Burgers/ and Lax/s seventh-order KdV equations,” Chaos, Solitons & Fractals, vol. 29, no. 2, pp. 294-302, 2006. · Zbl 1099.35521 · doi:10.1016/j.chaos.2005.08.054
[7] A.-M. Wazwaz, “The decomposition method for solving higher dimensional initial boundary value problems of variable coefficients,” International Journal of Computer Mathematics, vol. 76, no. 2, pp. 159-172, 2000. · Zbl 0970.65106 · doi:10.1080/00207160008805017
[8] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[9] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[10] J.-H. He, “Homotopy perturbation method for solving boundary value problems,” Physics Letters A, vol. 350, no. 1-2, pp. 87-88, 2006. · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[11] J.-H. He, “Comparison of homotopy perturbation method and homotopy analysis method,” Applied Mathematics and Computation, vol. 156, no. 2, pp. 527-539, 2004. · Zbl 1062.65074 · doi:10.1016/j.amc.2003.08.008
[12] J.-H. He, “Homotopy perturbation method for bifurcation of nonlinear problems,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 207-208, 2005.
[13] J.-H. He, “The homotopy perturbation method nonlinear oscillators with discontinuities,” Applied Mathematics and Computation, vol. 151, no. 1, pp. 287-292, 2004. · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[14] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[15] J.-H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 05137891 · doi:10.1016/S0020-7462(98)00048-1
[16] J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[17] J.-H. He and X.-H. Wu, “Construction of solitary solution and compacton-like solution by variational iteration method,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp. 108-113, 2006. · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[18] J.-H. He and X.-H. Wu, “Variational iteration method: new development and applications,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 881-894, 2007. · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[19] M. Inokuti, H. Sekine, and T. Mura, “General use of the Lagrange multiplier in nonlinear mathematical physics,” in Variational Method in the Mechanics of Solids, S. Nemat-Naseer, Ed., pp. 156-162, Pergamon Press, New York, NY, USA, 1978.
[20] M. A. Noor and S. T. Mohyud-Din, “Variational iteration decomposition method for solving higher dimensional initial boundary value problems with variable coefficients,” preprint, 2007. · Zbl 1122.65374
[21] S. T. Mohyud-Din, “A reliable algorithm for Blasius equation,” in Proceedings of the International Conference of Mathematical Sciences (ICMS /07), pp. 616-626, Selangor, Malaysia, November 2007.
[22] M. A. Noor and S. T. Mohyud-Din, “Variational iteration technique for solving higher order boundary value problems,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1929-1942, 2007. · Zbl 1122.65374 · doi:10.1016/j.amc.2006.12.071
[23] M. A. Noor and S. T. Mohyud-Din, “An efficient method for fourth-order boundary value propblems,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1101-1111, 2007. · Zbl 1141.65375 · doi:10.1016/j.camwa.2006.12.057
[24] M. A. Noor and S. T. Mohyud-Din, “Variational iteration technique for solving higher order boundary value problems,” Applied Mathematics and Computation, vol. 189, no. 2, pp. 1929-1942, 2007. · Zbl 1122.65374 · doi:10.1016/j.amc.2006.12.071
[25] M. A. Noor and S. T. Mohyud-Din, “Variational iteration decomposition method for solving eighth-order boundary value problems,” Differential Equations and Nonlinear Mechanics, vol. 2007, Article ID 19529, 16 pages, 2007. · Zbl 1143.49023 · doi:10.1155/2007/19529 · eudml:129191
[26] S. T. Mohyud-Din and M. A. Noor, “Homotopy perturbation method for solving fourth order boundary value problems,” Mathematical Problems in Engineering, vol. 2006, Article ID 98602, 15 pages, 2006. · Zbl 1144.65311 · doi:10.1155/2007/98602 · eudml:54478
[27] M. A. Noor and S. T. Mohyud-Din, “Homotopy method for solving eighth order boundary value problems,” Journal of Mathematical Analysis and Approximation Theory, vol. 1, no. 2, pp. 161-169, 2006. · Zbl 1204.65086
[28] M. A. Noor and S. T. Mohyud-Din, “An efficient algorithm for solving fifth-order boundary value problems,” Mathematical and Computer Modelling, vol. 45, no. 7-8, pp. 954-964, 2007. · Zbl 1133.65052 · doi:10.1016/j.mcm.2006.09.004
[29] M. A. Noor and S. T. Mohyud-Din, “Homotopy perturbation method for solving sixth-order boundary value problems,” Computers & Mathematics with Applications, vol. 55, no. 12, pp. 2953-2972, 2008. · Zbl 1142.65386 · doi:10.1016/j.camwa.2007.11.026
[30] M. A. Noor and S. T. Mohyud-Din, “A reliable approach for solving linear and nonlinear sixth-order boundary value problems,” International Journal of Computational and Applied Mathematics, vol. 2, no. 2, pp. 163-172, 2007.
[31] M. A. Noor and S. T. Mohyud-Din, “Approximate solutions of Flieral-Petviashivili equation and its variants,” International Journal of Mathematics and Computer Science, vol. 2, no. 4, pp. 345-360, 2007. · Zbl 1136.65073
[32] M. A. Noor, “On iterative methods for nonlinear equations using homotopy perturbation technique,” preprint, 2008.