Burman, Erik; Kessler, Daniel; Rappaz, Jacques Convergence of the finite element method applied to an anisotropic phase-field model. (English) Zbl 1155.74404 Ann. Math. Blaise Pascal 11, No. 1, 67-94 (2004). Summary: We formulate a finite element method for the computation of solutions to an anisotropic phase-field model for a binary alloy. Convergence is proved in the \(H^1\)-norm. The convergence result holds for anisotropy below a certain threshold value. We present some numerical experiments verifying the theoretical results. For anisotropy below the threshold value we observe optimal order convergence, whereas in the case where the anisotropy is strong the numerical solution to the phase-field equation does not converge. Cited in 2 Documents MSC: 74S05 Finite element methods applied to problems in solid mechanics 74E10 Anisotropy in solid mechanics 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs Software:ALBERT PDF BibTeX XML Cite \textit{E. Burman} et al., Ann. Math. Blaise Pascal 11, No. 1, 67--94 (2004; Zbl 1155.74404) Full Text: DOI Numdam EuDML OpenURL References: [1] Burman, E.; Rappaz, J., Existence of solutions to an anisotropic phase-field model, Math. Methods Appl. Sci., 26, 13, 1137-1160, (2003) · Zbl 1032.35053 [2] Chen, X.; Elliott, C. M.; Gardiner, A.; Zhao, J. J., Convergence of numerical solutions to the Allen-Cahn equation, Appl. Anal., 69, 1-2, 47-56, (1998) · Zbl 0992.65096 [3] Chen, Z.; Hoffmann, K.-H., An error estimate for a finite-element scheme for a phase field model, IMA J. Numer. Anal., 14, 2, 243-255, (1994) · Zbl 0801.65091 [4] Dacorogna, B., Direct methods in the calculus of variations, 78, (1989), Springer-Verlag, Berlin · Zbl 0703.49001 [5] Feng, X.; Prohl, A., Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits, Math. Comp., 73, 246, 541-567 (electronic), (2004) · Zbl 1115.76049 [6] Kessler, D., Modeling, mathematical and numerical study of a solutal phase-field model, (2001) [7] Kessler, D.; Krüger, O.; Scheid, J. F., Modeling, mathematical and numerical study of a solutal phase-field model, (1998) [8] Kessler, D.; Scheid, J.-F., A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy, IMA J. Numer. Anal., 22, 2, 281-305, (2002) · Zbl 1001.76057 [9] Kobayashi, R., A numerical approach to three-dimensional dendritic solidification, Experiment. Math., 3, 1, 59-81, (1994) · Zbl 0811.65126 [10] Rappaz, J.; Scheid, J. F., Existence of solutions to a phase-field model for the isothermal solidification process of a binary alloy, Math. Methods Appl. Sci., 23, 6, 491-513, (2000) · Zbl 0964.35026 [11] Schmidt, A.; Siebert, K. G., ALBERT—software for scientific computations and applications, Acta Math. Univ. Comenian. (N.S.), 70, 1, 105-122, (2000) · Zbl 0993.65134 [12] Warren, J. A.; Boettinger, W. J., Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field model, Acta Metall., 43, 689-703, (1995) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.