zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unsteady axisymmetric flow of a second-grade fluid over a radially stretching sheet. (English) Zbl 1155.76304
Summary: We provide an analytic solution for the problem of unsteady axisymmetric flow of a second-grade fluid over a radially stretching sheet. The governing equations are first modeled and then converted into a non-linear partial differential equation by utilizing similarity transformations. The series solution is constructed by the homotopy analysis method (HAM). The explicit expressions for the velocity and skin friction are developed and discussed for the sundry flow parameters. It is worth mentioning that the present solution is valid for all values of the dimensionless time.

MSC:
76A05Non-Newtonian fluids
WorldCat.org
Full Text: DOI
References:
[1] Rajagopal, K. R.: Boundedness and uniqueness of fluids of the differential type, Acta sinica indica 18, 1-11 (1982) · Zbl 0555.76011
[2] Rajagopal, K. R.: On the boundary conditions for fluids of the differential type, Navier--Stokes equations and related nonlinear problems, 273-278 (1995) · Zbl 0846.35107
[3] Rajagopal, K. R.; Kaloni, P. N.: Some remarks on boundary conditions for fluids of differential type, Continuum mechanics and its applications, 935-942 (1989) · Zbl 0706.76008
[4] Sakiadis, B. C.: Boundary layer behavior on continuous solid surface, Aiche J. 7, 26-28 (1961)
[5] Pop, I.; Na, T. Y.: Unsteady flow past a stretching sheet, Mech. res. Comm. 23, 413-422 (1996) · Zbl 0893.76017 · doi:10.1016/0093-6413(96)00040-7
[6] Xu, H.; Liao, S. J.: Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate, J. non-Newtonian fluid mech. 129, 46-55 (2005) · Zbl 1195.76069 · doi:10.1016/j.jnnfm.2005.05.005
[7] Nazar, N.; Amin, N.; Pop, I.: Unsteady boundary layer flow due to stretching surface in a rotating fluid, Mech. res. Commun. 31, 121-128 (2004) · Zbl 1053.76017 · doi:10.1016/j.mechrescom.2003.09.004
[8] Liao, S. J.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate, Comm. non-linear sci. Numer. sim. 11, 326-339 (2006) · Zbl 1078.76022 · doi:10.1016/j.cnsns.2004.09.004
[9] Takhar, H. S.; Nath, G.: Unsteady flow over a stretching with magnetic field in a rotating fluid, Z. angew. Math. phys. 49, 989-1001 (1998) · Zbl 0929.76148 · doi:10.1007/s000330050135
[10] Liao, S. J.: Beyond perturbation: introduction to homotopy analysis method, (2003)
[11] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl. math. Comput. 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[12] Liao, S. J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. fluid mech. 385, 101-128 (1999) · Zbl 0931.76017 · doi:10.1017/S0022112099004292
[13] Liao, S. J.; Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems, J. fluid mech. 453, 411-425 (2002) · Zbl 1007.76014 · doi:10.1017/S0022112001007169
[14] Ayub, M.; Rasheed, A.; Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int. J. Eng. sci. 41, 2091-2103 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[15] Sajid, M.; Hayat, T.; Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on moving belt, Nonlinear dyn. 50, 27-35 (2007) · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[16] Yang, C.; Liao, S. J.: On the explicit purely analytic solution of von Kármán swirling viscous flow, Comm. non-linear sci. Numer. sim. 11, 83-93 (2006) · Zbl 1075.35059 · doi:10.1016/j.cnsns.2004.05.006
[17] Cheng, J.; Liao, S. J.; Pop, I.: Analytic series solution for unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium, Transp. porous media 61, 365-379 (2005)
[18] Hayat, T.; Khan, M.: Homotopy solution for a generalized second grade fluid past a porous plate, Non-linear dynam. 42, 395-405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[19] M. Sajid, I. Ahmad, T. Hayat, M. Ayub, Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet, Comm. Non-linear Sci. Numer. Sim. (in press) · Zbl 1155.76304
[20] Truesdell, C.; Noll, W.: The non-linear field theories of mechanics (Handbuch der physik, III/3), (1965) · Zbl 0779.73004
[21] Rivlin, R. S.; Ericksen, J. L.: Stress deformation relations for isotropic materials, J. ration. Mech. anal. 4, 323-425 (1955) · Zbl 0064.42004
[22] Dunn, J. E.; Fosdick, R. L.: Thermodynamics, stability and boundedness of fluids of complexity 2 and the fluids of second grade, Arch. ration. Mech. anal. 56, 191-252 (1974) · Zbl 0324.76001 · doi:10.1007/BF00280970
[23] Dunn, J. E.; Rajagopal, K. R.: Fluids of differential type -- critical review and thermodynamic analysis, Int. J. Eng. sci. 33, 689-729 (1995) · Zbl 0899.76062 · doi:10.1016/0020-7225(94)00078-X
[24] Fosdick, R. L.; Rajagopal, K. R.: Anomalous features in the model of second grade fluids, Arch. ration. Mech. anal. 70, 145-152 (1979) · Zbl 0427.76006 · doi:10.1007/BF00250351