zbMATH — the first resource for mathematics

Non-radial self-similar solutions for the critical dissipative quasi-geostrophic equation. (Solutions auto-similaires non radiales pour l’équation quasi-géostrophique dissipative critique.) (French) Zbl 1155.76320
Summary: We prove the existence of self-similar solutions for the critical dissipative quasi-geostrophic equation by using the formalism of mild solutions in a space close to \(L^\infty\).

76D05 Navier-Stokes equations for incompressible viscous fluids
26A33 Fractional derivatives and integrals
35Q35 PDEs in connection with fluid mechanics
35R10 Partial functional-differential equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76U05 General theory of rotating fluids
Full Text: DOI
[1] Barraza, O., Self-similar solutions in weak \(L^p\)-spaces of the navier – stokes equations, Rev. mat. iberoamericone, 12, 411-439, (1996) · Zbl 0860.35092
[2] Cannone, M., Ondelettes, paraproduits et navier – stokes, (1995), Diderot Editeur Paris · Zbl 1049.35517
[3] Constantin, P.; Córdoba, D.; Wu, J., On the critical dissipative quasigeostrophic equation, Indiana univ. math. J., 50, 97-107, (2001) · Zbl 0989.86004
[4] Koch, H.; Tataru, D., Well-posedness for the navier – stokes equations, Adv. math., 157, 22-35, (2001) · Zbl 0972.35084
[5] F. Marchand, Thèse (travail en cours), Université d’Évry
[6] Stein, E.M., Singular integrals and differentiability properties of functions, (1970), Princeton University Press Princeton · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.