×

zbMATH — the first resource for mathematics

The form factor program: A review and new results, the nested \(SU(N)\) off-shell Bethe ansatz and the \(1/N\) expansion. (English. Russian original) Zbl 1155.81300
Theor. Math. Phys. 155, No. 1, 512-522 (2008); translation from Teor. Mat. Fiz. 155, No. 1, 13-24 (2008).
Summary: The purpose of the “bootstrap program” for integrable quantum field theories in 1+1 dimensions is to construct a model explicitly in terms of its Wightman functions. We illustrate this program here mainly in terms of the \(SU(N)\) Gross-Neveu model. We construct the nested off-shell Bethe ansatz for an \(SU(N)\) factoring S-matrix and consider the problem of how to sum over intermediate states in the short-distance limit of the two-point Wightman function for the sinh-Gordon model.

MSC:
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81V35 Nuclear physics
81U20 \(S\)-matrix theory, etc. in quantum theory
81Q40 Bethe-Salpeter and other integral equations arising in quantum theory
81R12 Groups and algebras in quantum theory and relations with integrable systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Heisenberg, Z. Naturforsch., 1, 608–622 (1946).
[2] G. F. Chew, The S-Matrix Theory of Strong Interaction, Benjamin, New York (1961). · Zbl 0129.42605
[3] B. Schroer, T. T. Truong, and P. Weisz, Phys. Lett. B, 63, 422–424 (1976). · doi:10.1016/0370-2693(76)90386-5
[4] M. Karowski, H. J. Thun, T. T. Truong, and P. Weisz, Phys. Lett. B, 67, 321–322 (1977). · doi:10.1016/0370-2693(77)90382-3
[5] M. Karowski and H. J. Thun, Nucl. Phys. B, 130, 295–308 (1977). · doi:10.1016/0550-3213(77)90108-0
[6] A. B. Zamolodchikov and A. B. Zamolodchikov, Ann. Phys., 120, 253–291 (1979). · doi:10.1016/0003-4916(79)90391-9
[7] M. Karowski and P. Weisz, Nucl. Phys. B, 139, 455–476 (1978). · doi:10.1016/0550-3213(78)90362-0
[8] B. Berg, M. Karowski, and P. Weisz, Phys. Rev. D, 19, 2477–2479 (1979). · doi:10.1103/PhysRevD.19.2477
[9] F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory (Adv. Series Math. Phys., Vol. 14), World Scientific, Singapore (1992). · Zbl 0788.46077
[10] H. M. Babujian, A. Foerster, and M. Karowski, ”The nested SU(N) off-shell Bethe ansatz and exact form factors,” arXiv:hep-th/0611012v1 (2006). · Zbl 1134.81391
[11] H. M. Babujian, A. Foerster, and M. Karowski, SIGMA, 2, 082 (2006).
[12] D. J. Gross and A. Neveu, Phys. Rev. D, 10, 3235–3253 (1974). · doi:10.1103/PhysRevD.10.3235
[13] E. Witten, Nucl. Phys. B, 145, 110–118 (1978). · doi:10.1016/0550-3213(78)90416-9
[14] E. Abdalla, B. Berg, and P. Weisz, Nucl. Phys. B, 157, 387–391 (1979). · doi:10.1016/0550-3213(79)90110-X
[15] R. Koberle, V. Kurak, and J. A. Swieca, Phys. Rev. D, 20, 897–902 (1979). · doi:10.1103/PhysRevD.20.897
[16] R. Z. Bariev, Phys. Lett. A, 55, 456–458 (1976). · doi:10.1016/0375-9601(76)90219-X
[17] B. M. McCoy, C. A. Tracy, and T. T. Wu, Phys. Rev. Lett., 38, 793–796 (1977). · doi:10.1103/PhysRevLett.38.793
[18] M. Sato, T. Miwa, and M. Jimbo, Proc. Japan Acad., 53, 6–146 (1977).
[19] V. P. Yurov and A. B. Zamolodchikov, Internat J. Mod. Phys. A, 6, 4557–4578 (1991). · doi:10.1142/S0217751X91002161
[20] G. Lechner, Comm. Math. Phys., 277, 821–860 (2008); arXiv:math-ph/0601022v3 (2006). · Zbl 1163.81010 · doi:10.1007/s00220-007-0381-5
[21] M. Karowski, Nucl. Phys. B, 153, 244–252 (1979). · doi:10.1016/0550-3213(79)90600-X
[22] H. Babujian and M. Karowski, Nucl. Phys. B, 620, 407–455 (2002). · Zbl 0988.81067 · doi:10.1016/S0550-3213(01)00551-X
[23] B. Berg, M. Karowski, V. Kurak, and P. Weisz, Nucl. Phys. B, 134, 125–132 (1978). · doi:10.1016/0550-3213(78)90489-3
[24] V. Kurak and J. A. Swieca, Phys. Lett. B, 82, 289–291 (1979). · doi:10.1016/0370-2693(79)90758-5
[25] R. Köberle and J. A. Swieca, Phys. Lett. B, 86, 209–210 (1979). · doi:10.1016/0370-2693(79)90822-0
[26] B. Berg and P. Weisz, Nucl. Phys. B, 146, 205–214 (1978). · doi:10.1016/0550-3213(78)90438-8
[27] A. A. Belavin, Phys. Lett. B, 87, 117–121 (1979). · doi:10.1016/0370-2693(79)90033-9
[28] H. Babujian and M. Karowski, Phys. Lett. B, 575, 144–150 (2003). · Zbl 1094.81517 · doi:10.1016/j.physletb.2003.09.038
[29] H. Babujian, A. Foerster, and M. Karowski, Nucl. Phys. B, 736, 169–198 (2006). · Zbl 1109.81042 · doi:10.1016/j.nuclphysb.2005.12.001
[30] H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento. Ital. Fis. B, 1, 205–225 (1955). · Zbl 0066.44006 · doi:10.1007/BF02731765
[31] M. Karowski, ”The bootstrap program for (1+1) dimensional field theoretic models with soliton behavior,” in: Field Theoretical Methods in Particle Physics (NATO Adv. Study Inst. Ser. B: Physics, Vol. 55), Plenum, New York (1980), pp. 307–324.
[32] H. M. Babujian, A. Fring, M. Karowski, and A. Zapletal, Nucl. Phys. B, 538, 535–586 (1999). · Zbl 0948.81599 · doi:10.1016/S0550-3213(98)00737-8
[33] K. M. Watson, Phys. Rev., 95, 228–236 (1954). · Zbl 0057.21902 · doi:10.1103/PhysRev.95.228
[34] Y. Takeyama, Publ. Res. Inst. Math. Sci., 39, 59–116 (2003). · Zbl 1018.33013 · doi:10.2977/prims/1145476149
[35] S. Pakuliak, Ann. Henri Poincaré, 7, 1541–1554 (2006). · Zbl 1116.17010 · doi:10.1007/s00023-006-0291-7
[36] H. Babujian, A. Foerster, and M. Karowski, ”Exact form factors in integrable quantum field theories: The SU(N)-Gross-Neveu model” (in preparation). · Zbl 1196.81227
[37] F. A. Smirnov, Nucl. Phys. B, 337, 156–180 (1990). · doi:10.1016/0550-3213(90)90255-C
[38] H. Babujian and M. Karowski, Internat J. Mod. Phys. A, 19, 34–49 (2004). · Zbl 1080.81036 · doi:10.1142/S0217751X04020294
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.