×

A food chain system with Holling IV functional responses and impulsive effect. (English) Zbl 1155.92043

Summary: According to biological and chemical control strategies for pest control, our main purpose is to construct a three trophic level food chain system with Holling IV functional responses and periodic constant impulsive effect concerning integrated pest management, and to investigate the dynamic behaviors of this system. By using the Floquet theory and the comparison theorem of impulsive differential equations and analytic methods, we prove that there exists a globally asymptotically stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, a condition for permanence of the system is established. Finally, numerical simulation shows that there exists a stable positive periodic solution with a maximum value no larger than a given level.

MSC:

92D40 Ecology
34A37 Ordinary differential equations with impulses
34C25 Periodic solutions to ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
34D05 Asymptotic properties of solutions to ordinary differential equations
34D23 Global stability of solutions to ordinary differential equations

Keywords:

persistence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Croft B. A., Arthropod Biological Control Agents and Pesticide (1990)
[2] DOI: 10.1016/S0025-5564(00)00051-1 · Zbl 0966.92026 · doi:10.1016/S0025-5564(00)00051-1
[3] Hua L. Z., Theoret. Pop. Biol. 64 pp 39–
[4] DOI: 10.1016/S0025-5564(02)00095-0 · Zbl 0991.92025 · doi:10.1016/S0025-5564(02)00095-0
[5] DOI: 10.1016/S0261-2194(00)00075-2 · doi:10.1016/S0261-2194(00)00075-2
[6] V. J. C. Lenteren, Integrated Pest Management, ed. D. Dent (Chapman & Hall, London, 1995) pp. 311–320.
[7] DOI: 10.1016/j.cam.2005.03.003 · Zbl 1088.34040 · doi:10.1016/j.cam.2005.03.003
[8] Holling C. S., Mem. Ent. Sec. Can. 45 pp 1–
[9] DOI: 10.1002/bit.260100602 · doi:10.1002/bit.260100602
[10] Sugie W., Biotech. Bioeng. 23 pp 2039–
[11] DOI: 10.1016/j.chaos.2003.12.060 · Zbl 1058.92047 · doi:10.1016/j.chaos.2003.12.060
[12] DOI: 10.1016/S0960-0779(04)00457-6 · doi:10.1016/S0960-0779(04)00457-6
[13] DOI: 10.1016/j.chaos.2004.09.051 · Zbl 1086.34043 · doi:10.1016/j.chaos.2004.09.051
[14] Bainov D. D., Impulsive Differential Equations: Periodic Solutions and Applications (1993) · Zbl 0815.34001
[15] DOI: 10.1142/0906 · doi:10.1142/0906
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.