×

A model for two species with stage structure and feedback control. (English) Zbl 1155.92359

Summary: This paper studies a periodic coefficients predator-prey delay system with mixed functional response, in which the prey has a history that takes them through two stages, immature and mature. Also, the total toxic action on the predator population expressed by an integral term is considered in our system. Furthermore, the feedback control is considered. Sufficient conditions which guarantee the permanence and extinction of the system are obtained. Finally, we give a brief discussion of our results. From a biological point of view, our results can be used to help protect beneficial animals.

MSC:

92D40 Ecology
34K35 Control problems for functional-differential equations
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aiello W. G., J. Math. Biol. 101 pp 139–
[2] DOI: 10.1016/S0304-3800(99)00069-1 · doi:10.1016/S0304-3800(99)00069-1
[3] DOI: 10.1016/0304-3800(80)90081-2 · doi:10.1016/0304-3800(80)90081-2
[4] DOI: 10.2307/1938202 · doi:10.2307/1938202
[5] DOI: 10.1007/BF00271634 · Zbl 0288.92018 · doi:10.1007/BF00271634
[6] DOI: 10.1016/S0304-3800(03)00223-0 · doi:10.1016/S0304-3800(03)00223-0
[7] DOI: 10.1016/S0304-3800(99)00145-3 · doi:10.1016/S0304-3800(99)00145-3
[8] Chen T., Chelonian Conservation Biol. 3 pp 87–
[9] Close L. M., Chelonian Conservation Biol. 2 pp 563–
[10] Cui J. A., Discrete Contin. Dynam. Syst. Series B 4 pp 547–
[11] Cui J. A., Elec. J. Differential Equations 81 pp 1–
[12] DOI: 10.1016/S0898-1221(99)00316-8 · Zbl 0968.92018 · doi:10.1016/S0898-1221(99)00316-8
[13] DOI: 10.1007/978-3-642-93073-7 · doi:10.1007/978-3-642-93073-7
[14] DOI: 10.1137/0132006 · Zbl 0348.34031 · doi:10.1137/0132006
[15] Freedman H. I., Q. Appl. Math. 2 pp 351–
[16] DOI: 10.1007/BF00275063 · Zbl 0362.92013 · doi:10.1007/BF00275063
[17] Gopalsamy K., Stability and Oscillations in Delay Differential Equations of Population Dynamics (1991) · Zbl 0752.34039
[18] DOI: 10.1007/978-1-4612-9892-2 · doi:10.1007/978-1-4612-9892-2
[19] Holman J. A., Michigan Acad. 26 pp 471–
[20] Jørgensen S. E., Ecol. Model 164 pp 33–
[21] Kolmanovskii V. B., Stability of Functional Differential Equations (1986)
[22] DOI: 10.1016/S0022-5193(05)80232-2 · doi:10.1016/S0022-5193(05)80232-2
[23] Kuang Y., Delay Differential Equations with Applications in Population Dynamics (1993) · Zbl 0777.34002
[24] DOI: 10.1007/978-94-015-7939-1 · doi:10.1007/978-94-015-7939-1
[25] DOI: 10.1016/S0025-5564(98)10051-2 · Zbl 0943.92030 · doi:10.1016/S0025-5564(98)10051-2
[26] DOI: 10.1016/j.ecolmodel.2003.09.009 · doi:10.1016/j.ecolmodel.2003.09.009
[27] Pritchard P. C. H., Living Turtles of the World (1967)
[28] DOI: 10.1137/1030003 · Zbl 0674.34012 · doi:10.1137/1030003
[29] DOI: 10.1016/S0025-5564(00)00068-7 · Zbl 1028.34049 · doi:10.1016/S0025-5564(00)00068-7
[30] DOI: 10.1007/s102550200042 · Zbl 1054.34125 · doi:10.1007/s102550200042
[31] DOI: 10.1016/S1468-1218(02)00026-3 · Zbl 1018.92033 · doi:10.1016/S1468-1218(02)00026-3
[32] Teng Z., Nonlinear Anal. 42 pp 1221–
[33] Volterra V., Lecon sur la Theorie Mathematique de la Lutte pour la vie (1931)
[34] DOI: 10.1016/S0898-1221(97)00056-4 · doi:10.1016/S0898-1221(97)00056-4
[35] Xiao Y., Acta Math. Sinica Eng. Ser. 19 pp 1–
[36] Zhang X., Math. Biosci. 101 pp 139–
[37] Zhang H., Int. J. Pure Appl. Math. 29 pp 425–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.