zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Simultaneous Schur stability of interval matrices. (English) Zbl 1155.93416
Summary: Interval matrix structures are ubiquitous in nature and engineering. Ordinarily, in an uncertain system there is associated with a set of coupled interval matrices, a basic issue of exploring its asymptotic stability. Here we introduce the notion of simultaneous Schur stability by linking the concepts of the majorant and the joint spectral radius, and prove the asymptotic stability of a set of interval matrices governed by simultaneous Schur stability. The present result may lead to the stability analysis of discrete dynamical interval systems.

MSC:
93D20Asymptotic stability of control systems
65G40General methods in interval analysis
WorldCat.org
Full Text: DOI
References:
[1] Ahn, H. -S.; Moor, K. L.; Chen, Y. Q.: Monotonic convergent iterative learning controller design based on interval model conversion, IEEE transactions on automatic control 51, 366-371 (2006)
[2] Ahn, H. -S.; Moor, K. L.; Chen, Y. Q.: Stability analysis of iterative learning control systems with interval uncertainty, Automatica 43, 892-902 (2007) · Zbl 1117.93075 · doi:10.1016/j.automatica.2006.11.020
[3] Alefeld, G.; Herzberger, J.: Introduction to interval computations, (1983) · Zbl 0552.65041
[4] Ando, T.; Shih, M. -H.: Simultaneous contractibility, SIAM journal on matrix analysis and applications 19, 487-498 (1998) · Zbl 0912.15033 · doi:10.1137/S0895479897318812
[5] Bak, J.; Newman, D. J.: Complex analysis, (1982) · Zbl 0482.30001
[6] Barmish, B. R.; Kang, H. I.: Extreme point results for robust stability of interval plants: beyond first order compensators, Automatica 28, 1169-1180 (1992) · Zbl 0763.93066 · doi:10.1016/0005-1098(92)90058-N
[7] Bartlett, A. C.; Hollot, C. V.; Huang, L.: Root locations of an entire polytope of polynomials: it sufficies to check the edges, Mathematics of control, signals and systems 1, 61-71 (1988) · Zbl 0652.93048 · doi:10.1007/BF02551236
[8] Batra, P.: On necessary condition for real robust Schur-stability, IEEE transactions on automatic control 48, 259-261 (2003)
[9] Bauer, P. H.; Premaratne, K.; Durán, J.: A necessary and sufficient condition for robust asymptotic stability of time-variant discrete systems, IEEE transactions on automatic control 38, 1427-1430 (1993) · Zbl 0787.93074 · doi:10.1109/9.237661
[10] Berger, M. A.; Wang, Y.: Bounded semigroups of matrices, Linear algebra and its applications 166, 21-27 (1992) · Zbl 0818.15006 · doi:10.1016/0024-3795(92)90267-E
[11] Blondel, V. D.; Megretski, A.: Chapter 10.2: when is a pair of matrices stable ?, Unsolved problems in mathematical systems and control theory, 304-308 (2004)
[12] Blondel, V. D.; Nesterov, Y.; Theys, J.: On the accuracy of the ellipsoid norm approximation of the joint spectral radius, Linear algebra and its applications 394, 91-107 (2005) · Zbl 1086.15020 · doi:10.1016/j.laa.2004.06.024
[13] Brayton, R. K.; Tong, C. H.: Stability of dynamical systems: A constructive approach, IEEE transactions on circuits and systems 26, 1121-1130 (1979) · Zbl 0413.93048 · doi:10.1109/TCS.1979.1084637
[14] Chapellat, H.; Bhattacharyya, S. P.: A generalization of kharitonov’s theorem: robust stability of interval plants, IEEE transactions on automatic control 34, 306-311 (1989) · Zbl 0666.93100 · doi:10.1109/9.16420
[15] Chapellat, H.; Keel, L. H.; Bhattacharyya, S. P.: Extremal robustness properties of multilinear interval systems, Automatica 30, 1037-1042 (1994) · Zbl 0800.93283 · doi:10.1016/0005-1098(94)90198-8
[16] Daubechies, I.; Lagarias, J. C.: Sets of matrices all infinite products of which converge, Linear algebra and its applications 161, 227-263 (1992) · Zbl 0746.15015 · doi:10.1016/0024-3795(92)90012-Y
[17] Elsner, L.: The generalized spectral-radius theorem: an analytic-geometric proof, Linear algebra and its applications 220, 151-159 (1995) · Zbl 0828.15006 · doi:10.1016/0024-3795(93)00320-Y
[18] Han, H. S.; Lee, J. G.: Necessary and sufficient conditions for stability time varying discrete interval matrices, International journal of control 59, 1021-1029 (1994) · Zbl 0813.93055 · doi:10.1080/00207179408923115
[19] Heuser, H. G.: Functional analysis, (1982) · Zbl 0465.47001
[20] Householder, A. S.: The theory of matrices in numerical analysis, (1964) · Zbl 0161.12101
[21] Jiang, C. I.: Sufficient conditions for the asymptotic stability of interval matrices, International journal of control 46, 1803-1810 (1987) · Zbl 0631.15009 · doi:10.1080/00207178708934011
[22] Kharitonov, V. L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential’nye uraveniya 14, 1483-1485 (1978) · Zbl 0409.34043
[23] Kolla, S. R.; Farison, J. B.: Improved stability robustness bounds using state transformation for linear discrete systems, Automatica 26, 933-935 (1990) · Zbl 0703.93052 · doi:10.1016/0005-1098(90)90013-8
[24] Le, K.; Tzes, A.: Sufficient stability condition for weighted minimum uncertainty prediction controller, Automatica 33, 2273-2275 (1997) · Zbl 0904.93034 · doi:10.1016/S0005-1098(97)00153-2
[25] Liu, D.; Molchanov, A.: Criteria for robust absolute stability of time-varying nonlinear continuous-time systems, Automatica 38, 627-637 (2002) · Zbl 1013.93044 · doi:10.1016/S0005-1098(01)00243-6
[26] Mayer, G.: On the convergence of powers of interval matrices, Linear algebra and its applications 58, 201-216 (1984) · Zbl 0555.65020 · doi:10.1016/0024-3795(84)90212-X
[27] Mori, T.; Kokame, H.: Convergence property of interval matrices and interval polynomial, International journal of control 45, 481-485 (1987) · Zbl 0617.65041 · doi:10.1080/00207178708933746
[28] Myszkorowski, P.: On the stability of discrete-time linear interval systems, Automatica 30, 913-914 (1994) · Zbl 0800.93949 · doi:10.1016/0005-1098(94)90183-X
[29] Rohn, J.: Positive definiteness and stability of interval matrices, SIAM journal on matrix analysis and applications 15, 175-184 (1994) · Zbl 0796.65065 · doi:10.1137/S0895479891219216
[30] Rota, G. C.; Strang, W. G.: A note on the joint spectral radius, Indagations 22, 379-381 (1960) · Zbl 0095.09701
[31] Shih, M. -H.: Simultaneous Schur stability, Linear algebra and its applications 287, 323-336 (1999) · Zbl 0948.15016 · doi:10.1016/S0024-3795(98)10071-X
[32] Shih, M. -H.; Lur, Y. -Y.; Pang, C. -T.: An inequality for the spectral radius of an interval matrix, Linear algebra and its applications 274, 27-36 (1998) · Zbl 0915.15017 · doi:10.1016/S0024-3795(97)00238-3
[33] Shih, M. -H.; Wu, J. -W.; Pang, C. -T.: Asymptotic stability and generalized Gelfand spectral radius formula, Linear algebra and its applications 252, 61-70 (1997) · Zbl 0873.15012 · doi:10.1016/0024-3795(95)00592-7
[34] Shorten, R.; Wirth, F.; Mason, O.; Wulff, K.; King, C.: Stability criteria for switched and hybrid systems, SIAM review 49, 545-592 (2007) · Zbl 1127.93005 · doi:10.1137/05063516X
[35] Soh, C. Y.; Evans, R. J.: Characterization of robust controllers, Automatica 25, 115-117 (1989) · Zbl 0665.93048 · doi:10.1016/0005-1098(89)90126-X
[36] Tsujino, T.; Fujii, T.; Wei, K.: On the connection between controllability and stabilizability of linear systems with structural uncertain parameters, Automatica 29, 7-12 (1993) · Zbl 0772.93070 · doi:10.1016/0005-1098(93)90171-O
[37] Varga, R.: Matrix iterative analysis, (2000) · Zbl 0998.65505
[38] Wang, S. G.: Robust pole clustering in a good quality region of aircraft for matrices with structured uncertainties, Automatica 39, 525-532 (2003) · Zbl 1019.93038 · doi:10.1016/S0005-1098(02)00268-6
[39] Xu, S. J.; Rachid, A.; Darouach, M.: Robustness analysis of interval matrices based on kharitonov’s theorem, IEEE transactions on automatic control 43, 273-278 (1998) · Zbl 0917.93054 · doi:10.1109/9.661080
[40] Zhou, C. S.; Deng, J. L.: Stability analysis of gray discrete-time systems, IEEE transactions on circuits and systems 34, 173-175 (1989) · Zbl 0664.93065 · doi:10.1109/9.21090