zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lower bounds for the least common multiple of finite arithmetic progressions. (English) Zbl 1156.11004
Summary: Let $u_0$, $r$ and $n$ be positive integers such that $(u_0,r)=1.$ Let $u_k=u_0+kr$ for $1\leq k\leq n$. We prove that $L_n:=\text{lcm}\{u_0,u_1,\dots, u_n\}\geq u_0(r+1)^n$ which confirms {\it B. Farhi}’s conjecture [C. R., Math., Acad. Sci. Paris 341, No. 8, 469--474 (2005; Zbl 1117.11005)]. Further we show that if $r<n$, then $L_n\geq u_0r(r+1)^n$.

MSC:
11A05Multiplicative structure of the integers
11B25Arithmetic progressions
WorldCat.org
Full Text: DOI
References:
[1] Apostol, T. M.: Introduction to analytic number theory. (1976) · Zbl 0335.10001
[2] Farhi, B.: Minoration non triviales du plus petit commun multiple de certaines suites finies d’entiers. C. R. Acad. sci. Paris, ser. I 341, 469-474 (2005)
[3] B. Green, T. Tao, The primes contain arbitrarily long arithmetic progression, Ann. Math., in press · Zbl 1191.11025
[4] Hanson, D.: On the product of the primes. Canad. math. Bull. 15, 33-37 (1972) · Zbl 0231.10008
[5] Hardy, G. H.; Wright, E. M.: An introduction to the theory of numbers. (1960) · Zbl 0086.25803
[6] Hong, S.; Loewy, R.: Asymptotic behavior of eigenvalues of greatest common divisor matrices. Glasgow math. J. 46, 551-569 (2004) · Zbl 1083.11021
[7] Nair, M.: On Chebyshev-type inequalities for primes. Amer. math. Monthly 89, 126-129 (1982) · Zbl 0494.10004