Su, You-Hui; Li, Wan-Tong; Sun, Hong-Rui Positive solutions of singular \(p\)-Laplacian BVPs with sign changing nonlinearity on time scales. (English) Zbl 1156.34309 Math. Comput. Modelling 48, No. 5-6, 845-858 (2008). Summary: We investigate a class of singular \(m\)-point \(p\)-Laplacian boundary value problem on time scales with the sign changing nonlinearity. By using the well-known Schauder fixed point theorem and upper and lower solutions method, some new existence criteria for positive solutions of the boundary value problem are presented. These results are new even for the corresponding differential \((\mathbb T = \mathbb R)\) and difference equations \((\mathbb T=\mathbb Z)\), as well as general time scales setting. As an application, an example is given to illustrate the results. Cited in 15 Documents MSC: 34B15 Nonlinear boundary value problems for ordinary differential equations 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 39A20 Multiplicative and other generalized difference equations Keywords:time scales; boundary value problem; positive solution; \(p\)-Laplacian; upper and lower solutions PDF BibTeX XML Cite \textit{Y.-H. Su} et al., Math. Comput. Modelling 48, No. 5--6, 845--858 (2008; Zbl 1156.34309) Full Text: DOI References: [1] Agarwal, R. P.; Bohner, M.; Li, W. T., Nonoscillation and Oscillation Theory for Functional Differential Equations, Pure and Applied Mathematics Series, vol. 267 (2004), Marcel Dekker [2] Agarwal, R. P.; Bohner, M.; Rehak, P., (Half-Linear Dynamic Equations. Half-Linear Dynamic Equations, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th birthday, vol. 1 (2003), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 1-57 · Zbl 1056.34049 [3] Agarwal, R. P.; Lü, H.; O’Regan, D., Existence theorem for the one-dimensional singular \(p\)-Laplacian equation with sign changing nonlinearities, Appl. Math. Comput., 143, 15-38 (2003) · Zbl 1031.34023 [4] Anderson, D. R.; Avery, R.; Henderson, J., Existence of solutions for a one-dimensional \(p\)-Laplacian on time scales, J. Difference Equ. Appl., 10, 889-896 (2004) · Zbl 1058.39010 [5] Atici, F. M.; Guseinov, G. Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141, 75-99 (2002) · Zbl 1007.34025 [6] Aulbach, B.; Neidhart, L., Integration on measure chains, (Proceedings of the Sixth International Conference on Difference Equations (2004), CRC: CRC Boca Raton, FL), 239-252 · Zbl 1083.26005 [7] Bohner, M.; Peterson, A., Advances in Dynamic Equation on Time Scales (2003), Birkhäuser: Birkhäuser Boston [8] Bohner, M.; Peterson, A., Dynamic Equation on Time Scales, An Introduction with Applications (2001), Birkhäuser: Birkhäuser Boston · Zbl 0978.39001 [9] He, Z., Double positive solutions of three-point boundary value problems for \(p\)-Laplacian dynamic equations on time scales, J. Comput. Appl. Math., 182, 304-315 (2005) · Zbl 1075.39011 [11] Jones, M. A.; Song, B.; Thomas, D. M., Controlling wound healing through debridement, Math. Comput. Modelling, 40, 1057-1064 (2004) · Zbl 1061.92036 [12] Lakshmikantham, V.; Sivasundaram, S.; Kaymakcalan, B., Dynamic Systems on Measure Chains (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0869.34039 [13] Li, W. T.; Liu, X. L., Eigenvalue problems for second-order nonlinear dynamic equations on time scales, J. Math. Anal. Appl., 318, 578-592 (2006) · Zbl 1099.34026 [14] Li, W. T.; Sun, H. R., Positive solutions for second-order \(m\)-point boundary value problems on time scales, Acta Math. Sin., 22, 1797-1804 (2006) · Zbl 1119.34021 [15] Li, W. T.; Sun, H. R., Multiple positive solutions for nonlinear dynamic systems on a measure chain, J. Comput. Appl. Math., 162, 421-430 (2004) · Zbl 1045.39007 [16] Lü, H.; O’Regan, D.; Agarwal, R. P., Upper and lower solutions for the singular \(p\)-Laplacian with sign changing nonlinearities and nonlinear boundary data, J. Comput. Appl. Math., 181, 442-466 (2005) · Zbl 1082.34022 [17] Lü, H.; O’Regan, D.; Agarwal, R. P., Existence theorem for the one-dimensional singular \(p\)-Laplacian equation with a nonlinear boundary condition, J. Comput. Appl. Math., 182, 188-210 (2005) · Zbl 1071.34019 [18] Lü, H.; O’Regan, D.; Agarwal, R. P., Positive solutions for singular \(p\)-Laplacian equations with sign changing nonlinearities using inequality theory, Appl. Math. Comput., 165, 587-597 (2005) · Zbl 1071.34018 [19] Ma, R., Positive solutions of a nonlinear \(m\)-point boundary value problem, Comput. Math. Appl., 42, 755-765 (2001) · Zbl 0987.34018 [22] Sun, J. P., Existence of solution and positive solution of BVP for nonlinear third-order dynamic equation, Nonlinear Anal. TMA, 64, 629-636 (2006) · Zbl 1099.34022 [23] Sun, J. P., A new existence theorem for right focal boundary value problems on a measure chain, Appl. Math. Lett., 18, 41-47 (2005) · Zbl 1074.34017 [24] Sun, H. R.; Li, W. T., Positive solutions of \(p\)-Laplacian \(m\)-point boundary value problems on time scales, Taiwanese J. Math., 12, 93-115 (2008) [25] Sun, H. R.; Li, W. T., Multiple positive solutions for \(p\)-Laplacian \(m\)-point boundary value problems on time scales, Appl. Math. Comput., 182, 478-491 (2006) · Zbl 1126.34019 [26] Sun, H. R.; Li, W. T., Existence theory for positive solutions to one-dimensional \(p\)-Laplacian boundary value problems on time scales, J. Differential Equations, 240, 217-248 (2007) · Zbl 1139.34047 [27] Thomas, D. M.; Vandemuelebroeke, L.; Yamaguchi, K., A mathematical evolution model for phytoremediation of metals, Discrete Contin. Dyn. Syst. Ser. B, 5, 411-422 (2005) · Zbl 1085.34530 [28] Wang, Y.; Ge, W., Existence of multiple positive solutions for multipoint boundary value problems with a one-dimensional \(p\)-Laplacian, Nonlinear Anal. TMA, 62, 476-485 (2007) · Zbl 1130.34009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.