zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization and anti-synchronization coexist in two-degree-of-freedom dissipative gyroscope with nonlinear inputs. (English) Zbl 1156.34331
Summary: This study demonstrates that synchronization and anti-synchronization can coexist in two-degree-of-freedom dissipative gyroscope system with input nonlinearity. Because of the nonlinear terms of the gyroscope system, the system exhibits complex motions containing regular and chaotic motions. Using the variable structure control technique, a novel control law is established which guarantees the hybrid projective synchronization including synchronization, anti-synchronization and projective synchronization even when the control input nonlinearity is present. By Lyapunov stability theory with control terms, two suitable sliding surfaces are proposed to ensure the stability of the controlled closed-loop system in sliding mode, and two variable structure controllers (VSC) are designed to guarantee the hitting of the sliding surfaces. Numerical simulations are presented to verify the proposed synchronization approach.

MSC:
34D20Stability of ODE
70K28Parametric resonances (nonlinear dynamics)
70E05Motion of the gyroscope
WorldCat.org
Full Text: DOI
References:
[1] Agiza, H. N.: Chaos synchronization of Lü dynamical system, Nonlinear anal. 58, No. 1 -- 2, 11-20 (2004) · Zbl 1057.34042 · doi:10.1016/j.na.2004.04.002
[2] Bowong, S.: A new adaptive chaos synchronization principle for a class of chaotic systems, Int. J. Nonlinear sci. Numer. simulation 6, No. 4, 399-409 (2005)
[3] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications, (1998) · Zbl 0908.93005
[4] Chen, H. K.: Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping, J. sound vib. 255, 719-740 (2002) · Zbl 1237.70094
[5] Chen, H. K.; Ge, Z. M.: Bifurcations and chaos of a two-degree-of-freedom dissipative gyroscope, Chaos solitons fractals 24, 125-136 (2005) · Zbl 1142.70309 · doi:10.1016/j.chaos.2004.07.028
[6] Escultura, E. E.: Dynamic modeling of chaos and turbulence, Nonlinear anal. 63, No. 5 -- 7, 519-532 (2005) · Zbl 1159.83374 · doi:10.1016/j.na.2005.02.052
[7] Ge, Z. M.: Chaos control for rigid body systems, (2002)
[8] Ge, Z. M.; Chen, H. K.: Bifurcations and chaos in a rate gyro with harmonic excitation, J. sound vib. 194, 107-117 (1996)
[9] Ge, Z. M.; Lee, J. K.: Chaos synchronization and parameter identification for gyroscope system, Appl. math. Comput. 163, 667-682 (2005) · Zbl 1116.70012 · doi:10.1016/j.amc.2004.04.008
[10] Ge, Z. -M.; Hsiao, C. -L.; Chen, Y. -S.; Chang, C. -M.: Chaos and chaos control for a two-degree-of-freedom heavy symmetric gyroscope, Int. J. Nonlinear sci. Numer. simulation 8, No. 1, 89-100 (2007)
[11] Hsu, K. C.: Adaptive variable structure control design for uncertain time-delay system with nonlinear input, Dyn. control 8, 341-354 (1998) · Zbl 1059.93508 · doi:10.1023/A:1008256611126
[12] Kilic, R.: Experimental study on impulsive synchronization between two modified Chua’s circuits, Nonlinear anal. R. word appl. 7, 1298-1303 (2006) · Zbl 1130.37359 · doi:10.1016/j.nonrwa.2005.12.004
[13] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalence of unidirectionally coupled dynamical systems, Phys. rev. Lett. 76, 1816-1819 (1996)
[14] Lei, Y.; Xu, W.; Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control, Phys. lett. A 343, 153-158 (2005) · Zbl 1194.34090 · doi:10.1016/j.physleta.2005.06.020
[15] Leipnik, R. B.; Newton, T. A.: Double strange attractors in rigid body motion, Phys. lett. A 86, 63-67 (1981)
[16] Li, G. H.: Modified projective synchronization of chaotic system, Chaos solitons fractals 32, No. 5, 1786-1790 (2007) · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[17] Miliou, A. N.; Antoniades, I. P.; Stavrinides, S. G.; Anagnostopouslos, A. N.: Secure communication by chaotic synchronization: robustness under noisy conditions, Nonlinear anal. R. word appl. 8, 1003-1012 (2007) · Zbl 1187.94007 · doi:10.1016/j.nonrwa.2006.05.004
[18] Murali, K.; Lakshmanan, M.: Secure communication using a compound signal from generalized synchronizable chaotic systems, Phys. lett. A 241, 303-310 (1998) · Zbl 0933.94023 · doi:10.1016/S0375-9601(98)00159-5
[19] Park, J. H.: Adaptive synchronization of a unified chaotic system with an uncertain parameter, Int. J. Nonlinear sci. Numer. simulation 6, No. 2, 201-206 (2005)
[20] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[21] Slotine, J. E.; Li, W.: Applied nonlinear control, (1991) · Zbl 0753.93036
[22] Takeo, F.: Chaos and hypercyclicity for solution semigroups to some partial differential equations, Nonlinear anal. 63, No. 5 -- 7, 1943-1953 (2005) · Zbl 1226.47009 · doi:10.1016/j.na.2005.02.010
[23] Tong, X.; Mrad, N.: Chaotic motion of a symmetric gyro subjected to a harmonic base excitation, Trans. am. Soc. mech. Eng., J. Appl. mech. 68, 681-684 (2001) · Zbl 1110.74711 · doi:10.1115/1.1379036
[24] Utkin, V. I.: Sliding modes in control optimization, (1992) · Zbl 0748.93044
[25] Wang, Y. W.; Guan, Z. H.: Generalized synchronization of continuous chaotic system, Chaos solitons fractals 27, 97-101 (2006) · Zbl 1083.37515 · doi:10.1016/j.chaos.2004.12.038
[26] Yang, S. S.; Duan, C. K.: Generalized synchronization in chaotic systems, Chaos solitons fractals 10, 1703-1707 (1998) · Zbl 0946.34040 · doi:10.1016/S0960-0779(97)00149-5
[27] Yau, H. T.: Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos solitons fractals 22, 341-347 (2004) · Zbl 1060.93536 · doi:10.1016/j.chaos.2004.02.004
[28] Yau, H. T.; Kuo, C. -L.; Yan, J. -J.: Fuzzy sliding mode control for a class of chaos, Int. J. Nonlinear sci. Numer. simulation 7, No. 3, 333-338 (2006)
[29] Yau, H. T.; Lin, J. -S.; Yan, J. -J.: Synchronization control for a class of chaotic systems with uncertainties, Int. J. Bifurcation and chaos 15, No. 7, 1-12 (2005) · Zbl 1092.93594 · doi:10.1142/S0218127405013204