Lee, Tuo-Yeong Some convergence theorems for Lebesgue integrals. (English) Zbl 1156.40007 Analysis, München 28, No. 2, 263-268 (2008). After proving some convergence theorems for multiple series of complex numbers the author proves several new convergence theorems for Lebesgue integrals of the series in question. Reviewer: Jacek Gilewicz (Marseille) Cited in 2 Documents MSC: 40B05 Multiple sequences and series (should also be assigned at least one other classification number in this section) 40A10 Convergence and divergence of integrals 26B99 Functions of several variables Keywords:multiple series of complex numbers; convergence of Lebesgue integrals PDF BibTeX XML Cite \textit{T.-Y. Lee}, Analysis, München 28, No. 2, 263--268 (2008; Zbl 1156.40007) Full Text: DOI References: [1] DOI: 10.1017/S0004972700016397 · Zbl 0795.42007 · doi:10.1017/S0004972700016397 [2] DOI: 10.1006/jmaa.1996.5172 · Zbl 0879.26047 · doi:10.1006/jmaa.1996.5172 [3] Hardy G. H., Proc. London Math. Soc. 1 (2) pp 124– (1903) [4] Hardy G. H., Proc. Cambridge Philos. Soc. 19 pp 86– (1916) [5] DOI: 10.1007/BF01994074 · Zbl 0525.40002 · doi:10.1007/BF01994074 [6] Móricz F., Studia Math. 98 pp 203– (1991) [7] DOI: 10.1016/0022-247X(91)90050-A · Zbl 0724.42013 · doi:10.1016/0022-247X(91)90050-A [8] Móricz F., Michigan Math. J. 37 pp 191– (1990) · Zbl 0714.42017 · doi:10.1307/mmj/1029004125 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.