Flury, Markus Coincidence of Lyapunov exponents for random walks in weak random potentials. (English) Zbl 1156.60076 Ann. Probab. 36, No. 4, 1528-1583 (2008). This paper deals with random walks on a multidimensional lattice, endowed with a drift along the first axis. The author proved the coincidence of quenched and annealed Lyapunov exponents for the ballistic regime in higher dimensions in case of the potential is small enough and investigated an estimate of the speed of convergence for the free energy. The results were obtained by using mainly renewal techniques and arguments from Ornstein-Zernike theory. Reviewer: Anatoliy Pogorui (Zhitomir) Cited in 1 ReviewCited in 14 Documents MSC: 60K37 Processes in random environments 34D08 Characteristic and Lyapunov exponents of ordinary differential equations 60K35 Interacting random processes; statistical mechanics type models; percolation theory Keywords:random walk; random potential; Lyapunov exponents; interacting path potential × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Albeverio, S. and Zhou, X. Y. (1996). A martingale approach to directed polymers in a random environment. J. Theoret. Probab. 9 171-189. · Zbl 0837.60069 · doi:10.1007/BF02213739 [2] Bolthausen, E. (1989). A note on the diffusion of directed polymers in a random environment. Comm. Math. Phys. 123 529-534. · Zbl 0684.60013 · doi:10.1007/BF01218584 [3] Carmona, P. and Hu, Y. (2002). On the partition function of a directed polymer in a Gaussian random environment. Probab. Theory Related Fields 124 431-457. · Zbl 1015.60100 · doi:10.1007/s004400200213 [4] Chayes, J. T. and Chayes, L. (1986). Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures. Comm. Math. Phys. 105 221-238. · doi:10.1007/BF01211100 [5] Comets, F., Shiga, T. and Yoshida, N. (2003). Directed polymers in a random environment: Path localization and strong disorder. Bernoulli 9 705-723. · Zbl 1042.60069 · doi:10.3150/bj/1066223275 [6] Essen, C. G. (1968). On the concentration function of a sum of independent random variables. Z. Wahrsch. Verw. Gebiete 9 290-308. · Zbl 0195.19303 · doi:10.1007/BF00531753 [7] Flury, M. (2007). Large deviations and phase transition for random walks in random nonnegative potentials. Stochastic Process. Appl. 117 596-612. · Zbl 1193.60033 · doi:10.1016/j.spa.2006.09.006 [8] Greven, G. and den Hollander, F. (1992). Branching random walk in random environment: Phase transition for local and global growth rates. Probab. Theory Related Fields 91 195-249. · Zbl 0744.60079 · doi:10.1007/BF01291424 [9] Ioffe, D. (1998). Ornstein-Zernike behavior and analyticity of shapes for self-avoiding walks on \Bbb Z d . Markov Process. Related Fields 4 323-350. · Zbl 0924.60086 [10] Imbrie, J. Z. and Spencer, T. (1988). Diffusion of directed polymers in a random environment. J. Statist. Phys. 52 609-626. · Zbl 1084.82595 · doi:10.1007/BF01019720 [11] Madras, M. and Slade, G. (1993). The Self-Avoiding Walk . Birkhäuser, Boston. · Zbl 0780.60103 [12] Sznitman, A. S. (1998). Brownian Motion , Obstacles and Random Media . Springer, Berlin. · Zbl 0973.60003 [13] Talagrand, M. (1996). A new look at independence. Ann. Probab. 24 1-34. · Zbl 0858.60019 · doi:10.1214/aop/1042644705 [14] Trachsler, M. (1999). Phase transitions and fluctuations for random walks with drift in random potentials. Ph.D. thesis, Univ. Zurich. [15] Zerner, M. P. W. (1998). Directional decay of the Green’s function for a random nonnegative potential on \Bbb Z d . Ann. Appl. Probab. 8 246-280. · Zbl 0938.60098 · doi:10.1214/aoap/1027961043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.