×

Controlled stratification for quantile estimation. (English) Zbl 1156.62023

Summary: We propose and discuss variance reduction techniques for the estimation of quantiles of the output of a complex model with random input parameters. These techniques are based on the use of a reduced model, such as a metamodel or a response surface. The reduced model can be used as a control variate; or a rejection method can be implemented to sample the realizations of the input parameters in prescribed relevant strata; or the reduced model can be used to determine a good biased distribution of the input parameters for the implementation of an importance sampling strategy. The different strategies are analyzed and the asymptotic variances are computed, which shows the benefit of an adaptive controlled stratification method. This method is finally applied to a real example (computation of the peak cladding temperature during a large-break loss of coolant accident in a nuclear reactor).

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
65C05 Monte Carlo methods
65C60 Computational problems in statistics (MSC2010)
62P30 Applications of statistics in engineering and industry; control charts

Software:

EGO; ElemStatLearn
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Avramidis, A. N. and Wilson, J. R. (1988). Correlation-induction techniques for estimating quantiles in simulation experiments. Oper. Res. 46 574-591. · Zbl 1009.62598 · doi:10.1287/opre.46.4.574
[2] David, H. A. (1981). Order Statistics . Wiley, New York. · Zbl 0553.62046
[3] Davidson, R. and MacKinnon, J. G. (1992). Regression-based methods for using control variates in Monte Carlo experiments. J. Econometrics 54 203-222.
[4] Dielman, T., Lowry, C. and Pfaffenberger, R. (1994). A comparison of quantile estimators. Communications in Statistics-Simulation and Computation 23 355-371. · Zbl 0825.62034 · doi:10.1080/03610919408813175
[5] Fang, K.-T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Experiments . Chapman and Hall, London. · Zbl 1093.62117
[6] Fishman, G. S. (1996). Monte Carlo Concepts, Algorithms and Applications . Springer, New York. · Zbl 0859.65001
[7] Glasserman, P., Heidelberger, P. and Shahabuddin, P. (1998). Stratification issues in estimating Value-at-Risk. In Proceedings of the 1999 Winter Simulation Conference 351-359. IEEE Computer Society Press, Piscataway, New Jersey. · Zbl 1232.91348
[8] Glynn, P. (1996). Importance sampling for Monte Carlo estimation of quantiles. In Mathematical Methods in Stochastic Simulation and Experimental Design: Proceedings of the 2nd St. Petersburg Workshop on Simulation 180-185. Publishing House of Saint Petersburg University.
[9] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models . Chapman and Hall, London. · Zbl 0747.62061
[10] Hastie, T. J., Tibshirani, R. J. and Friedman, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction . Springer, New York. · Zbl 0973.62007
[11] Hesterberg, T. C. (1993). Control variates and importance sampling for the bootstrap. In Proceedings of the Statistical Computing Section of the American Statistical Association 40-48.
[12] Hesterberg, T. C. (1995). Average importance sampling and defensive mixture distributions. Technometrics 37 185-194. · Zbl 0822.62002 · doi:10.2307/1269620
[13] Hesterberg, T. C. and Nelson, B. L. (1998). Control variates for probability and quantile estimation. Management Science 44 1295-1312. · Zbl 1103.90374 · doi:10.1287/mnsc.44.9.1295
[14] Hsu, J. C. and Nelson, B. L. (1987). Control variates for quantile estimation. In Proceedings of the 1987 Winter Simulation Conference (A. Thesen, H. Grant and W. D. Kelton, eds.) 434-444.
[15] Jones, D., Schonlau, M. and Welch, W. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13 455-492. · Zbl 0917.90270 · doi:10.1023/A:1008306431147
[16] Law, A. M. and Kelton, W. D. (1991). Simulation Modeling and Analysis , 2nd ed. McGraw-Hill, New York. · Zbl 0489.65007
[17] Lin, D. K. J. (1993). A new class of supersaturated design. Technometrics 35 28-31.
[18] Marrel, A., Iooss, B., Van Dorpe, F. and Volkova, E. (2008). An efficient methodology for modeling complex computer codes with Gaussian processes. Comput. Statist. Data Anal. DOI: 10.1016/j.csda.2008.03.026. · Zbl 1452.62094
[19] Nelson, B. L. (1990). Control variates remedies. Oper. Res. 38 974-992. · Zbl 0731.62071 · doi:10.1287/opre.38.6.974
[20] Nutt, W. T. and Wallis, G. B. (2004). Evaluation of nuclear safety from the outputs of computer codes in the presence of uncertainties. Reliab. Eng. Syst. Safety 83 57-77.
[21] Oakley, J. (2004). Estimating percentiles of uncertain computer code outputs. Appl. Statist. 53 83-93. · Zbl 1111.62395 · doi:10.1046/j.0035-9254.2003.05044.x
[22] Oh, M. S. and Berger, J. O. (1992). Adaptive importance sampling in Monte Carlo integration. J. Stat. Comput. Simul. 41 143-168. · Zbl 0781.65016 · doi:10.1080/00949659208810398
[23] Petruzzi, A., D’Auria, F., Micaelli, J.-C., De Crecy, A. and Royen, J. (2004). The BEMUSE programme (Best-Estimate Methods-Uncertainty and Sensitivity Evaluation). In Proceedings of the Int. Meet. on Best-Estimate Methods in Nuclear Installation Safety Analysis (BE-2004) IX 1 225-235. Washington, USA.
[24] Ranjan, P., Bingham, D. and Michailidis, G. (2008). Sequential experiment design for contour estimation from complex computer codes. Technometrics . · doi:10.1198/004017008000000541
[25] Rao, C. R. (1973). Linear Statistical Inference and Its Applications . Wiley, New York. · Zbl 0256.62002
[26] Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method . Wiley, New York. · Zbl 0529.68076
[27] Rutherford, B. (2006). A response-modeling alternative to surrogate models for support in computational analyses. Reliab. Eng. Syst. Safety 91 1322-1330.
[28] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statist. Sci. 4 409-435. · Zbl 0955.62619 · doi:10.1214/ss/1177012413
[29] Schonlau, M. and Welch, W. J. (2005). Screening the input variables to a computer model via analysis of variance and visualization. In Screening Methods for Experimentation and Industry, Drug Discovery and Genetics (A. M. Dean and S. M. Lewis, eds.) 308-327. Springer, Berlin.
[30] Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser B 58 267-288. · Zbl 0850.62538
[31] Vazquez, E. and Piera Martinez, M. (2008). Estimation of the volume of an excursion set of a Gaussian process using intrinsic kriging. J. Statist. Plann. Inference . To appear. Available at
[32] Volkova, E., Iooss, B. and Van Dorpe, F. (2008). Global sensitivity analysis for a numerical model of radionuclide migration, from the RRC “Kurchatov Institute” radwaste disposal site. Stoch. Environ. Res. Risk Assess. 22 17-31. · Zbl 1169.62399 · doi:10.1007/s00477-006-0093-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.