##
**Hybrid formulation and solution for transient conjugated conduction-external convection.**
*(English)*
Zbl 1156.80357

Summary: This work presents a hybrid numerical-analytical solution for transient laminar forced convection over flat plates of non-negligible thickness, subjected to arbitrary time variations of applied wall heat flux at the fluid-solid interface. This conjugated conduction-convection problem is first reformulated through the employment of the coupled integral equations approach (CIEA) to simplify the heat conduction problem on the plate by averaging the related energy equation in the transversal direction. As a result, an improved lumped partial differential formulation for the transversally averaged wall temperature is obtained, while a third kind boundary condition is achieved for the fluid from the heat balance at the solid-fluid interface. From the available steady velocity distributions, a hybrid numerical-analytical solution based on the generalized integral transform technique (GITT), under its partial transformation mode, is then proposed, combined with the method of lines implemented in the Mathematica 5.2 routine NDSolve. The interface heat flux partitions and heat transfer coefficients are readily determined from the wall temperature distributions, as well as the temperature values at any desired point within the fluid. A few test cases for different materials and wall thicknesses are defined to allow for a physical interpretation of the wall participation effect in contrast with the simplified model without conjugation.

### MSC:

80A20 | Heat and mass transfer, heat flow (MSC2010) |

76D05 | Navier-Stokes equations for incompressible viscous fluids |

### Keywords:

conjugated problems; hybrid methods; integral transforms; boundary layer; external convection### Software:

Mathematica
PDF
BibTeX
XML
Cite

\textit{C. P. Naveira} et al., Int. J. Heat Mass Transfer 52, No. 1--2, 112--123 (2009; Zbl 1156.80357)

Full Text:
DOI

### References:

[1] | Cotta, R. M.: Integral transforms in computational heat and fluid flow, (1993) · Zbl 0974.35004 |

[2] | Cotta, R. M.; Mikhailov, M. D.: Heat conduction: lumped analysis, integral transforms, symbolic computation, (1997) |

[3] | Cotta, R. M.: The integral transform method in thermal and fluids sciences and engineering, (1998) · Zbl 0906.00025 |

[4] | C.A.C. Santos, J.N.N. Quaresma, J.A. Lima, Benchmark Results for Convective Heat Transfer in Ducts: The Integral Transform Approach, ABCM Mechanical Sciences Series, Editora E-Papers, Rio de Janeiro, 2001. |

[5] | Cotta, R. M.; Mikhailov, M. D.: Hybrid methods and symbolic computations, Handbook of numerical heat transfer, 493-522 (2006) |

[6] | Bolivar, M. A. H.; Lage, P. L. C.; Cotta, R. M.: Integral transform solution of the laminar thermal boundary layer problem for flow past two-dimensional and axisymmetric bodies, Numer. heat transfer part A 33, No. 7, 779-797 (1998) |

[7] | Su, Jian: On the integral transform solution of laminar boundary layers with distributed suction, Hybrid methods eng. 1, No. 2, 103-118 (1999) |

[8] | Naveira, C. P.; Lachi, M.; Cotta, R. M.; Padet, J.: Integral transform solution of transient forced convection in external flow, Int. commun. Heat mass transfer 34, 703-712 (2007) |

[9] | Cotta, R. M.; Gerk, J. E. V.: Mixed finite difference/integral transform approach for parabolic – hyperbolic problems in transient forced convection, Numer. heat transfer part B 25, 433-448 (1994) |

[10] | Castellões, F. V.; Cotta, R. M.: Analysis of transient and periodic convection in microchannels via integral transforms, Prog. comput. Fluid dynamics 6, No. 6, 321-326 (2006) · Zbl 1189.76480 |

[11] | M. Lachi, R.M. Cotta, C.P. Naveira, J. Padet, Solution hybride dans l’étude de la convection forcée externe, Proc. of the Congrès Français de Thermique, SFT 2006, Actes T. 1, Ile de Ré, France, May, 2006, pp. 373 – 378. |

[12] | Perelman, Y. L.: On conjugate problems of heat transfer, Int. J. Heat mass transfer 3, 293-303 (1961) |

[13] | Luikov, A. V.; Aleksashenko, V. A.; Aleksashenko, A. A.: Analytical methods of solution of conjugated problems in convective heat transfer, Int. J. Heat mass transfer 14, 1047-1056 (1971) · Zbl 0268.76062 |

[14] | Luikov, A. V.: Conjugate convective heat transfer problems, Int. J. Heat mass transfer 17, No. 2, 257-265 (1974) |

[15] | Pozzi, A.; Lupo, M.: The coupling of conduction with forced convection over a flat plate, Int. J. Heat mass transfer 32, 1207-1214 (1989) |

[16] | Pop, I.; Ingham, D. B.: A note on conjugated forced convection boundary layer flow past a flat plate, Int. J. Heat mass transfer 36, 3873-3876 (1993) · Zbl 0799.76078 |

[17] | Vynnycky, M.; Kimura, S.; Kanev, K.; Pop, I.: Forced convection heat transfer from a flat plate: the conjugate problem, Int. J. Heat mass transfer 41, 45-59 (1998) · Zbl 0917.76086 |

[18] | Mossad, M.: Laminar forced convection conjugate heat transfer over a flat plate, Heat mass transfer 35, 371-375 (1999) |

[19] | Pozzi, A.; Tognaccini, R.: Coupling of conduction and convection past an impulsively started semi-infinite flat plate, Int. J. Heat mass transfer 43, 1121-1131 (2000) · Zbl 0968.76082 |

[20] | Chida, K.: Surface temperature of a flat plate of finite thickness under conjugate laminar forced convection heat transfer condition, Int. J. Heat mass transfer 43, 639-642 (2000) · Zbl 0949.76525 |

[21] | Guedes, R. O. C.; Cotta, R. M.; Brum, N. C. L.: Heat transfer in laminar tube flow with wall axial conduction effects, J. thermophys. Heat transfer 5, No. 4, 508-513 (1991) |

[22] | Guedes, R. O. C.; Cotta, R. M.: Periodic laminar forced convection within ducts including wall heat conduction effects, Int. J. Eng. sci. 29, No. 5, 535-547 (1991) · Zbl 0735.76063 |

[23] | Guedes, R. O. C.; Cotta, R. M.; Özisik, M. N.: Conjugated periodic turbulent forced convection in a parallel plate channel, J. heat transfer 116, 40-46 (1994) |

[24] | M. Lachi, M. Rebay, E. Mladin, J. Padet, Integral approach of the transient coupled heat transfer over a plate exposed to a variation in the input heat flux, in: ICHMT International Symposium Transient Convective Heat and Mass Transfer in Single & Two-Phase Flows, August, Cesme, Turkey, 2003. |

[25] | M. Lachi, J. Padet, M. Rebay, R.M. Cotta, Numerical solution for transient thermal interaction between a laminar boundary layer flow and a flat plate, in: Proceedings of 10th Brazilian Congress of Thermal Sciences and Engineering, ENCIT 2004, Rio de Janeiro, Brasil, November – December, 2004. |

[26] | M. Lachi, R.M. Cotta, C.P. Naveira, J. Padet, Improved lumped-differential formulation of transient conjugated conduction – convection in external flow, in: 11th Brazilian Congress of Thermal Sciences and Engineering, ENCIT 2006, Curitiba, Brasil, Paper No. CIT06-0965, December, 2006. |

[27] | Naveira, C.P., R.M. Cotta, M. Lachi, J. Padet, Transient conjugated conduction – external convection with front face imposed wall heat flux, in: Proceedings of IMECE2007, ASME International Mechanical Engineering Congress & Exposition, Paper No. IMECE2007-41417, Seattle, Washington, USA, November 11 – 15, 2007. |

[28] | Remy, M.; Degiovanni, A.; Maillet, D.: Mesure de coefficient d’échange pour des écoulements à faible vitesse, Rev. gén. Therm. 397, 28-42 (1995) |

[29] | Rebay, M.; Lachi, M.; Padet, J.: Mesure de coefficients de convection par méthode impulsionnelle – influence de la perturbation de la couche limite, Int. J. Therm. sci. 41, 1161-1175 (2002) |

[30] | Aparecido, J. B.; Cotta, R. M.: Improved one-dimensional fin solutions, Heat transfer eng. 11, No. 1, 49-59 (1989) |

[31] | Cotta, R. M.; Ozisik, M. N.; Mennig, J.: Coupled integral equation approach for phase-change problem in two-regions finite slab, J. franklin inst. 327, No. 2, 225-234 (1990) · Zbl 0715.73010 |

[32] | Correa, E. J.; Cotta, R. M.: Enhanced lumped-differential formulations of diffusion problems, Appl. math. Model. 22, 137-152 (1998) · Zbl 0914.76079 |

[33] | Wolfram, S.: The Mathematica book, (1999) · Zbl 0924.65002 |

[34] | White, F. M.: Viscous fluid flow, (1974) · Zbl 0356.76003 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.