Maingé, Paul-Emile Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. (English) Zbl 1156.90426 Set-Valued Anal. 16, No. 7-8, 899-912 (2008). Summary: We establish a strong convergence theorem regarding a regularized variant of the projected subgradient method for nonsmooth, nonstrictly convex minimization in real Hilbert spaces. Only one projection step is needed per iteration and the involved stepsizes are controlled so that the algorithm is of practical interest. To this aim, we develop new techniques of analysis which can be adapted to many other non-Fejérian methods. Cited in 1 ReviewCited in 391 Documents MSC: 90C25 Convex programming 90C30 Nonlinear programming PDF BibTeX XML Cite \textit{P.-E. Maingé}, Set-Valued Anal. 16, No. 7--8, 899--912 (2008; Zbl 1156.90426) Full Text: DOI OpenURL References: [1] Albert, Y.I.: Recurrence relations and variational inequalities. Soviet Mathematics, Doklady, 27, 511–517 (1983) · Zbl 0533.49026 [2] Albert, Y.I., Iusem, A.N.: Extension of subgradient techniques for nonsmooth optimization in a Banach space. Set-Valued Anal. 9, 315–335 (2001) · Zbl 1049.90123 [3] Albert, Y.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–35 (1998) · Zbl 0919.90122 [4] Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejer monotone methods in Hilbert space. Math. Oper. Res. 26, 248–264 (2001) · Zbl 1082.65058 [5] Bello, L., Raydan, M.: Preconditioned spectral projected-gradient method on convex sets. J. Comput. Math. 23, 225–232 (2005) · Zbl 1110.65048 [6] Bertsekas, D.P., Gafni, E.M.: Projection methods for variational inequalities with applications to the traffic assignment problem. Math. Program. Stud. 17, 139–159 (1982) · Zbl 0478.90071 [7] Bertsekas, D.P.: On the Goldstein–Levitin–Polyak gradient projection method. IEEE Trans. Automat. Contr. AC-21(2), 174–184 (1976) · Zbl 0326.49025 [8] Byrne, C.L.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 18, 441–453 (2004) · Zbl 0996.65048 [9] Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM Publications, Philadelphia (1983) · Zbl 0582.49001 [10] Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62, 261–275 (1993) · Zbl 0805.90083 [11] Ekeland, I., Themam, R.: Convex analysis and variational problems. In: Classic in Applied Mathematics, p. 28. SIAM, Philadelphia (1999) [12] Ermoliev, Y.M.: Methods for solving nonlinear extremal problems. Cybernet. 2, 1–17 (1966) [13] Hager, W.W., Park, S.: The gradient projection method with exact line search. J. Glob. Optim. 30, 103–118 (2004) · Zbl 1136.90513 [14] Halpern, B.: Fixed points of nonexpanding maps. Bull. Amer. Math. Soc. 73, 957–961 (1967) · Zbl 0177.19101 [15] Iusem, A.N.: On the convergence properties of the projected gradient method for convex optimization. Comput. Appl. Math. 22(1), 37–52 (2003) · Zbl 1213.90197 [16] Khobotov, E.N.: A modification of the extragradient method for the solution of variational inequalities and some optimization problems. Zh. Vychisl. Mat. Mat. Fiz. 27, 1462–1473 (1987) [17] Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976) · Zbl 0342.90044 [18] Marcotte, P.: Applications of Khobotov’s algorithm to variational and network equlibrium problems. Inform. Syst. Oper. Res. 29, 258–270 (1991) · Zbl 0781.90086 [19] Maingé, P.E., Moudafi, A.: Strong convergence of an iterative method for hierarchical fixed-point problems. Pacific J. Optim. 3(3), 529–538 (2007) · Zbl 1158.47057 [20] Moudafi, A.: Viscosity approximations methods for fixed point problems. J. Math. Anal. Appl. 241, 46–55 (2000) · Zbl 0957.47039 [21] Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz continuous monotone mappings. SIAM J. Optim. 16(4), 1230–1241 (2006) · Zbl 1143.47047 [22] Solodov, M.V., Tseng, P.: Modified projection methods for monotone variational inequalities. SIAM J. Control Optim. 34(5), 1814–1834 (1996) · Zbl 0866.49018 [23] Solodov, M.V., Zavriev, S.K.: Error stability properties of generalized gradient-type algorithms. J. Optim. Theory Appl. 98, 663–680 (1998) · Zbl 0913.90245 [24] Solodov, M.V.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37(3), 756–776 (1999) · Zbl 0959.49007 [25] Xiu, N., Wang, C., Kong, L.: A note on the gradient projection method with exact stepsize rule. J. Comput. Math. 25(2), 221–230 (2007) · Zbl 1174.90018 [26] Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25(7–8), 619–655 (2004) · Zbl 1095.47049 [27] Zeng, L.C., Yao, J.C.: Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwan. J. Math. 10(5), 1293–1303 (2006) · Zbl 1110.49013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.