zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A survey of linear matrix inequality techniques in stability analysis of delay systems. (English) Zbl 1156.93382
Summary: Recent years have witnessed a resurgence of research interests in analysing the stability of time-delay systems. Many results have been reported using a variety of approaches and techniques. However, much of the focus has been laid on the use of the Lyapunov-Krasovskii theory to derive sufficient stability conditions in the form of linear matrix inequalities. The purpose of this article is to survey the recent results developed to analyse the asymptotic stability of time-delay systems. Both delay-independent and delay-dependent results are reported in the article. Special emphases are given to the issues of conservatism of the results and computational complexity. Connections of certain delay-dependent stability results are also discussed.

93D20Asymptotic stability of control systems
Full Text: DOI