He, Yong; Shao, Fang; Li, Shiqun; Gao, Wei On left \(C\)-\(\mathcal U\)-liberal semigroups. (English) Zbl 1157.20334 Czech. Math. J. 56, No. 4, 1085-1108 (2006). Summary: The equivalence \(\widetilde{\mathcal Q}^U\) on a semigroup \(S\) in terms of a set \(U\) of idempotents in \(S\) is defined. A semigroup \(S\) is called a \(\mathcal U\)-liberal semigroup with \(U\) as the set of projections and denoted by \(S(U)\) if every \(\widetilde{\mathcal Q}^U\)-class in it contains an element in \(U\). A class of \(\mathcal U\)-liberal semigroups is characterized and some special cases are considered. Cited in 2 Documents MSC: 20M10 General structure theory for semigroups Keywords:equivalences; left liberal semigroups; left semi-spined products; idempotents PDFBibTeX XMLCite \textit{Y. He} et al., Czech. Math. J. 56, No. 4, 1085--1108 (2006; Zbl 1157.20334) Full Text: DOI EuDML References: [1] L. Du, Y. He: On the **-Green’s relations of semigroups and C-broad semigroups. J. Northwest Univ. (Natural Sci. Edt.) 29 (1999), 9–12. [2] A. El-Qallali: Structure theory for abundant and related semigroups. PhD. Thesis. York, 1980. [3] J. B. Fountain: Rpp monoids with central idempotents. Semigroup Forum 13 (1977), 229–237. · Zbl 0353.20051 · doi:10.1007/BF02194941 [4] J. B. Fountain: Adequate semigroups. Proc. Edinburgh Math. Soc. 44 (1979), 113–125. · Zbl 0414.20048 · doi:10.1017/S0013091500016230 [5] J. B. Fountain: Abundant semigroups. Proc. London Math. Soc. 44 (1982), 103–129. · Zbl 0481.20036 · doi:10.1112/plms/s3-44.1.103 [6] J. B. Fountain, G. M. S. Gomes, and V. Gould: A Munn type representation for a class of E-semiadequate semigroups. J. Algebra 218 (1999), 693–714. · Zbl 0940.20064 · doi:10.1006/jabr.1999.7871 [7] G. M. S. Gomes, V. Gould: Fundamental Ehresmann semigroups. Semigroup Forum 63 (2001), 11–33. · Zbl 0998.20051 [8] Y. Q. Guo, X. M. Ren, and K. P. Shum: Another structure of left C-semigroups. Adv. Math. 24 (1995), 39–43. · Zbl 0833.20075 [9] Y. Q. Guo, K. P. Shum, P. Y. Zhu: The structure of left C-rpp semigroups. Semigroup Forum 50 (1995), 9–23. · Zbl 0821.20046 · doi:10.1007/BF02573502 [10] Y. He: A construction for P-regular semigroups (announcement). Adv. Math. 29 (2000), 566–568. [11] Y. He: Partial kernel normal systems in regular semigroups. Semigroup Forum 64 (2002), 325–328. · Zbl 1002.20037 [12] Y. He: Some studies on regular and generalized regular semigroups. PhD. Thesis. Zhongshan Univ., Guangzhou, 2002. [13] Y. He: A construction for P-regular semigroups. Commun. Algebra 31 (2003), 1–27. · Zbl 1026.20053 · doi:10.1081/AGB-120016747 [14] Y. He, Y. Q. Guo, and K. P. Shum: The construction of orthodox supper rpp semigroups. Sci. China 47 (2004), 552–565. · Zbl 1083.20051 · doi:10.1360/02ys0365 [15] J. M. Howie: Fundamentals of Semigroup Theory. Oxford University Press Inc., New York, 1995. [16] M. Kil’p: On monoids over which all strongly at cyclic right acts are projective. Semigroup Forum 52 (1996), 241–245. · Zbl 0844.20051 · doi:10.1007/BF02574099 [17] M. V. Lawson: Rees matrix semigroups. Proc. Edinburgh Math. Soc. 33 (1990), 23–37. · Zbl 0668.20049 · doi:10.1017/S0013091500028856 [18] M. V. Lawson: Semigroups and ordered categories. I. The reduced case. J. Algebra 141 (1991), 422–462. · Zbl 0747.18007 · doi:10.1016/0021-8693(91)90242-Z [19] D. B. McAlister: One-to one partial right translations of a right cancellative semigroup. J. Algebra 43 (1976), 231–251. · Zbl 0349.20025 · doi:10.1016/0021-8693(76)90158-7 [20] M. Petrich: Inverse Semigroups. John Wiley & Sons, New York, 1984. · Zbl 0546.20053 [21] M. Petrich, N. Reilly: Completely Regular Semigroups. John Wiley & Sons, New York, 1999. · Zbl 0967.20034 [22] F. Shao, Y. He: Partial kernel normal systems for eventually regular semigroups. Semigroup Forum 71 (2005), 401–410. · Zbl 1098.20046 · doi:10.1007/s00233-005-0528-7 [23] X. D. Tang: On a theorem of C-wrpp semigroups. Comm. Algebra 25 (1997), 1499–1504. · Zbl 0879.20030 · doi:10.1080/00927879708825931 [24] M. Yamada: P-systems in regular semigroups. Semigroup Forum 24 (1982), 173–187. · Zbl 0479.20030 · doi:10.1007/BF02572766 [25] M. Yamada, M. K. Sen: P-regular semigroups. Semigroup Forum 39 (1989), 157–178. · Zbl 0664.20039 · doi:10.1007/BF02573295 [26] M. C. Zhang, Y. He: The structure of P-regular semigroups. Semigroup Forum 54 (1997), 278–291. · Zbl 0887.20028 · doi:10.1007/BF02676611 [27] P. Y. Zhu, Y. Q. Guo, K. P. Shum: Structure and characterizations of left Clifford semigroups. Science in China, Series A 35 (1992), 791–805. · Zbl 0781.20035 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.