zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Schwarz-Pick inequalities for the Schur-Agler class on the polydisk and unit ball. (English) Zbl 1157.30019
The notion of a realization has an important role in many areas of operator theory, linear systems theory, and interpolation theory. The authors use the notion of a unitary realization to derive estimates of derivatives of functions on the polydisk and unit ball. Some open problems are also discussed.

30C80Maximum principle; Schwarz’s lemma, Lindelöf principle, etc. (one complex variable)
32A30Generalizations of function theory to several variables
47B32Operators in reproducing-kernel Hilbert spaces
47A48Operator colligations, vessels, linear systems, characteristic functions, etc.
Full Text: DOI Link arXiv
[1] J. Agler, On the representation of certain holomorphic functions defined on a polydisc, in: Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, Oper. Theory Adv. Appl., vol. 48, Birkhäuser, Basel, 1990, pp. 47--66.
[2] J. Agler and J. E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. · Zbl 1010.47001
[3] D. Alpay and H. T. Kaptanoğlu, Some finite-dimensional backward-shift-invariant sub-spaces in the ball and a related interpolation problem, Integral Equations Operator Theory 42 (2002) no.1, 1--21. · Zbl 1010.47012 · doi:10.1007/BF01203020
[4] C.-G. Ambrozie and D. Timotin, A von Neumann type inequality for certain domains in $\mathbb{C}$n, Proc. Amer. Math. Soc. 131 (2003) no.3, 859--869. · Zbl 1047.47003 · doi:10.1090/S0002-9939-02-06321-9
[5] J. M. Anderson and J. Rovnyak, On generalized Schwarz-Pick estimates, Mathematika 53 (2006), 161--168. · Zbl 1120.30001 · doi:10.1112/S0025579300000085
[6] W. Arveson, Subalgebras of C*-algebras III: multivariable operator theory, Acta Math. 181 (1998) no.2, 159--228. · Zbl 0952.46035 · doi:10.1007/BF02392585
[7] F. G. Avkhadiev and K.-J. Wirths, Schwarz-Pick inequalities for derivatives of arbitrary order, Constr. Approx. 19 (2003) no.2, 265--277. · Zbl 1018.30018 · doi:10.1007/s00365-002-0503-4
[8] F. G. Avkhadiev and K.-J. Wirths, Schwarz-Pick inequalities for hyperbolic domains in the extended plane, Geom. Dedicata 106 (2004), 1--10. · Zbl 1066.30025 · doi:10.1023/B:GEOM.0000033833.91747.19
[9] F. G. Avkhadiev and K.-J. Wirths, Punishing factors for finitely connected domains, Monatsh. Math. 147 (2006) no.2, 103--115. · Zbl 1094.30026 · doi:10.1007/s00605-005-0334-z
[10] J. A. Ball and V. Bolotnikov, Realization and interpolation for Schur-Agler-class functions on domains with matrix polynomial defining function in $\mathbb{C}$n, J. Funct. Anal. 213 (2004) no.1, 45--87. · Zbl 1061.47014 · doi:10.1016/j.jfa.2004.04.008
[11] J. A. Ball and T. T. Trent, Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables, J. Funct. Anal. 157 (1998) no.1, 1--61. · Zbl 0914.47020 · doi:10.1006/jfan.1998.3278
[12] J. A. Ball, T. T. Trent and V. Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, in: Operator Theory and Analysis (Amsterdam, 1997), Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 89--138. · Zbl 0983.47011
[13] C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (2004) no.1, 1--19. · doi:10.1007/BF03321051
[14] H. P. Boas and D. Khavinson, Bohr’s power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997) no.10, 2975--2979. · Zbl 0888.32001 · doi:10.1090/S0002-9939-97-04270-6
[15] H. Bohr, A theorem concerning power series, Proc. London Math. Soc. (2) 13 (1914), 1--5; and: Collected Mathematical Works, Vol. III, paper #E3, Dansk Matematisk Forening, København, 1952. · Zbl 44.0289.01 · doi:10.1112/plms/s2-13.1.1
[16] M. S. Brodskiĭ, Unitary operator colligations and their characteristic functions, (in Russian) Uspekhi Mat. Nauk 33 (1978) no.4(202), 141--168, 256, English translation in: Russian Math. Surveys 33 (1978) no.4, 159--191.
[17] S. W. Drury, A generalization of von Neumann’s inequality to the complex ball, Proc. Amer. Math. Soc. 68 (1978) no.3, 300--304. · Zbl 0377.47016
[18] J. Eschmeier and M. Putinar, Spherical contractions and interpolation problems on the unit ball, J. Reine Angew. Math. 542 (2002), 219--236. · Zbl 0996.47020
[19] G. E. Knese, A Schwarz lemma on the polydisk, Proc. Amer. Math. Soc. 135 (2007) no.9, 2759--2768. · Zbl 1116.32003 · doi:10.1090/S0002-9939-07-08766-7
[20] E. Landau and D. Gaier, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, third ed., Springer-Verlag, Berlin, 1986.
[21] B. A. Lotto and T. Steger, Von Neumann’s inequality for commuting, diagonalizable contractions II, Proc. Amer. Math. Soc. 120 (1994) no.3, 897--901. · Zbl 0805.15018
[22] B. D. MacCluer, K. Stroethoff and R. Zhao, Generalized Schwarz-Pick estimates, Proc. Amer. Math. Soc. 131 (2003) no.2, 593--599. · Zbl 1012.30015 · doi:10.1090/S0002-9939-02-06588-7
[23] B. D. MacCluer, K. Stroethoff and R. Zhao, Schwarz-Pick type estimates, Complex Var. Theory Appl. 48 (2003) no.8, 711--730. · Zbl 1031.30012 · doi:10.1080/0278107031000154867
[24] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0177.34101
[25] St. Ruscheweyh, Two remarks on bounded analytic functions, Serdica 11 (1985) no.2, 200--202. · Zbl 0581.30009
[26] H. Upmeier, Toeplitz operators and index theory in several complex variables, in: Operator Theory: Advances and Applications, vol. 81, Birkhäuser Verlag, Basel, 1996. · Zbl 0957.47023
[27] N. Th. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operators theory, J. Funct. Anal. 16 (1974), 83--100. · Zbl 0288.47006 · doi:10.1016/0022-1236(74)90071-8