×

Infinitely many positive solutions for Kirchhoff-type problems. (English) Zbl 1157.35382

Summary: This paper is concerned with the existence of infinitely many positive solutions to a class of Kirchhoff-type problems \(-(a+b\int _{\varOmega}|\nabla u|^2\, dx)\varDelta u = \lambda f(x,u)\) in \(\varOmega\) and \(u=0\) on \(\partial \varOmega \), where \(\varOmega \) is a smooth bounded domain of \(\mathbb R^N\), \(a ,b> 0 , \lambda > 0\) and \(f: \varOmega \times \mathbb R \to \mathbb R\) is a Carathéodory function satisfying some further conditions. We obtain a sequence of a.e. positive weak solutions to the above problem tending to zero in \(L^\infty (\varOmega)\) with \(f\) being more general than that of [K. Perera and Z. Zhang, J. Differ. Equations 221, No. 1, 246–255 (2006; Zbl 1357.35131); J. Math. Anal. Appl. 317, No. 2, 456–463 (2006; Zbl 1100.35008)].

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35J20 Variational methods for second-order elliptic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Perera, K.; Zhang, Z., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221, 246-255 (2006) · Zbl 1357.35131
[2] Zhang, Z.; Perera, K., Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317, 456-463 (2006) · Zbl 1100.35008
[3] Ma, T. F.; Muñoz Rivera, J. E., Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett., 16, 243-248 (2003) · Zbl 1135.35330
[4] Alves, C. O.; Correa, F. J.S. A., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, 85-93 (2005) · Zbl 1130.35045
[5] Andrade, D.; Ma, T. F., An operator equation suggested by a class of nonlinear stationary problems, Commun. Appl. Nonl. Anal., 4, 65-71 (1997) · Zbl 0911.47062
[6] Arosio, A.; Pannizi, S., On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348, 305-330 (1996) · Zbl 0858.35083
[7] Bernstein, S., Sur une classe d’équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URRS. Sér. Math. [Izv. Akad. Nauk SSSR], 4, 17-26 (1940) · Zbl 0026.01901
[8] Cavalcanti, M. M.; Cavacanti, V. N.; Soriano, J. A., Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6, 701-730 (2001) · Zbl 1007.35049
[9] D’Ancona, P.; Spagnolo, S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108, 247-262 (1992) · Zbl 0785.35067
[10] Lions, J.-L., On some quations in boundary value problems of mathematical physics, (Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977). Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., vol. 30 (1978), North-Holland: North-Holland Amsterdam), 284-346
[11] Kirchhoff, G., Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[12] Pohožaev, S. I., A certain class of quasilinear hyperbolic equations, Mat. Sb. (N.S.), 96, 152-168 (1975)
[13] Chipot, M.; Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30, 4619-4627 (1997) · Zbl 0894.35119
[14] Chipot, M.; Rodrigues, J.-F., On a class of nonlocal nonlinear elliptic problems, RAIRO Modél. Math. Anal. Numér., 26, 447-467 (1992) · Zbl 0765.35021
[15] Omari, P.; Zanolin, F., Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential, Comm. Partial Differential Equations, 21, 721-733 (1996) · Zbl 0856.35046
[16] Omari, P.; Zanolin, F., An elliptic problem with arbitrarily small positive solution, Electron, J. Diff. Conf., 5, 301-308 (2000) · Zbl 0959.35059
[17] Ricceri, B., A genaral variational principle and some of its applications, J. Comput. Appl. Math., 113, 401-410 (2000) · Zbl 0946.49001
[18] Saint Raymond, J., On the multiplicity of the solutions of the equations \(- \Delta u = \lambda f(u)\), J. Differential Equations, 180, 65-88 (2002) · Zbl 1330.35279
[19] Anello, G.; Cordaro, G., Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the \(p\)-Laplacian, Proc. Roy. Soc. Edinburgh, 132, A, 511-519 (2002) · Zbl 1064.35053
[20] Bartsch, T.; Liu, Z.; Weth, T., Nodal solutions of a \(p\)-Laplacian equation, Proc. London Math. Soc. (3), 91, 129-152 (2005) · Zbl 1162.35364
[21] Bartsch, T.; Liu, Z., On superlinear elliptic \(p\)-Laplacian eqaution, J. Differential Equations, 198, 149-175 (2004) · Zbl 1087.35034
[22] Schechter, M.; Zou, W., Superlinear problem, Pacific J. Math., 214, 145-160 (2004) · Zbl 1134.35346
[23] Schechter, M.; Zou, W., Infinitely many sign-changing solutions for perturbed elliptic equations with Hardy potentials, J. Funct. Anal., 228, 1-38 (2005) · Zbl 1139.35346
[24] Schechter, M.; Wang, Z.-Q.; Zou, W., New liking theorem and sign-changing solutions, Comm. Partial Differential Equations, 29, 471-488 (2004) · Zbl 1140.35431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.