zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign. (English) Zbl 1157.37329
From the text: The authors study second-order systems of differential equations of the form $\ddot x + W'(t,x) = 0$, where $W(t,x) = (A(t)x,x) + b(t)V(x)$ with $A(\cdot)$ a continuous, $T$-periodic matrix-valued function, $(\cdot,\cdot)$ denotes the scalar product in $\Bbb R^n$, $b(\cdot)$ is a continuous, $T$-periodic real function and $V(\cdot) \in C^2(\Bbb R^n, \Bbb R)$ is a nonnegative, superquadratic function. Using variational methods and applying a linking theorem, the authors prove the existence of a nontrivial $T$-periodic solution in a case when $A(t)$ is not negative definite and several additional technical conditions are satisfied.

MSC:
37J45Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods
34C25Periodic solutions of ODE
47J30Variational methods (nonlinear operator equations)
58E05Abstract critical point theory
WorldCat.org
Full Text: DOI
References:
[1] Ambrosetti, A.; Zelati, V. Coti: Multiple homoclinic orbits for a class of conservative systems. Rend. sem. Mat. univ. Padova 89, 177-194 (1993) · Zbl 0806.58018
[2] Ambrosetti, A.; Mancini, G.: Solutions of minimal period for a class of convex Hamiltonian systems. Math. ann. 255, 405-421 (1981) · Zbl 0466.70022
[3] Antonacci, F.: Periodic and homoclinic solutions to a class of Hamiltonian systems with potential changing sign. Boll. unione. Mat. ital. 10-B, 303-324 (1996) · Zbl 1013.34038
[4] Antonacci, F.: Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. Nonlinear anal. T.M.A. 29, 1353-1364 (1997) · Zbl 0894.34036
[5] Ben Naoum, A. K.; Trostler, C.; Willem, M.: Existence and multiplicity results for homogeneous second order differential equations. J. differential equations 112, 239-249 (1994) · Zbl 0808.58013
[6] Caldiroli, P.; Montecchiari, P.: Homoclinic orbits for second order Hamiltonian systems with potential changing sign. Comm. appl. Anal. 1, 97-129 (1994) · Zbl 0867.70012
[7] Zelati, V. Coti; Rabinowitz, P. H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potential. J. ann. Math. soc. 4, 693-727 (1991) · Zbl 0744.34045
[8] Ding, Y. H.; Girardi, M.: Periodic and homoclinic solutions to a class of Hamiltonian systems with the potential changing sign. Dynamical systems appl. 2, 131-145 (1993) · Zbl 0771.34031
[9] Girardi, M.; Matzeu, M.: Existence and multiplicity results for periodic solutions for superquadratic Hamiltonian systems where the potential changes sign. Nonlinear differential equations appl. 2, 35-61 (1995) · Zbl 0821.34041
[10] Lassoued, L.: Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign. Ann. math. Pura appl. 156, 76-111 (1990)
[11] Lassoued, L.: Periodic solutions of a second order superquadratic system with a change of sign in the potential. J. differential equations 93, 1-18 (1991) · Zbl 0736.34041
[12] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conference Series in Mathematics, American Mathematical Society, Providence, RI, Vol. 65, 1986. · Zbl 0609.58002