Ding, Xie Ping; Wang, Lei Fixed points, minimax inequalities and equilibria of noncompact abstract economies in \(FC\)-spaces. (English) Zbl 1157.47037 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69, No. 2, 730-746 (2008). The authors first present a fixed point theorem in the setting of noncompact \(FC\)-spaces. Then they give several equivalent results to this fixed point theorem. As usual application of such kind of fixed point theorem, the authors derive a minimax theorem. Several maximal element theorems are also presented. Once again, as usual application of the maximal element theorems, several equilibrium existence results for abstract economies are derived. Reviewer: Qamrul Hasan Ansari (Aligarh) Cited in 6 Documents MSC: 47H10 Fixed-point theorems 49K35 Optimality conditions for minimax problems 91A10 Noncooperative games 47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics Keywords:fixed points; minimax inequalities; maximal elements; abstract economies; \(FC\)-spaces PDF BibTeX XML Cite \textit{X. P. Ding} and \textit{L. Wang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 69, No. 2, 730--746 (2008; Zbl 1157.47037) Full Text: DOI References: [1] Ding, X. P.; Tan, K. K., Fixed point theorems and equilibria of noncompact generalized games, (Tan, K. K., Fixed Point Theory and Applications (1992), World Sci. Pub.: World Sci. Pub. Singarpo), 80-96 · Zbl 1404.47007 [2] Ding, X. P.; Tan, K. K., A minimax inequality with applications to existence of equilibrium point and fixed point theorems, Colloq. Math., 63, 233-247 (1992) · Zbl 0833.49009 [3] Ding, X. P.; Tan, K. K., On equilibria of noncompact generalized games, J. Math. Anal. Appl., 177, 226-238 (1993) · Zbl 0789.90008 [4] Ding, X. P.; Kim, W. K.; Tan, K. K., Equilibria of noncompact generalized games with \(L^\ast \)-majorized preference correspondences, J. Math. Anal. Appl., 162, 508-517 (1992) · Zbl 0765.90092 [5] Ding, X. P.; Kim, W. K.; Tan, K. K., A selection theorem and its applications, Bull. Austral. Math., 46, 205-212 (1992) · Zbl 0762.47030 [6] Yuan, G. X.Z., KKM Theory and Applications in Nonlinear Analysis (1999), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York [7] Borglin, A.; Keiding, H., Existence of equilibrium action and of equilibrium: A note on the ‘new’ existence theorems, J. Math. Econom., 3, 313-316 (1973) · Zbl 0349.90157 [8] Yannelis, N. C.; Prabhakar, N. D., Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econom., 12, 233-245 (1983) · Zbl 0536.90019 [9] Toussaint, S., On the existence of equilibria in economics with infinite many commodities and without ordered preferences, J. Econom. Theory, 33, 98-115 (1984) · Zbl 0543.90016 [11] Tarafdar, E., A fixed point theorem equivalent to Fan-Knaster-Kuratowski-Mazurkiewicz theorem, J. Math. Anal. Appl., 128, 229-240 (1987) · Zbl 0644.47050 [12] Tan, K. K.; Yuan, X. Z., A minimax inequality with applications to existence of equilibrium points, Bull. Austral. Math., 47, 483-503 (1993) · Zbl 0803.47059 [13] Tarafdar, E., Fixed point theorems in \(H\)-spaces and equilibrium points of abstract economies, J. Austral. Math. Soc. Ser. A, 53, 252-260 (1992) · Zbl 0761.47041 [14] Ding, X. P., Equilibrium existence theorems of abstract economics in \(H\)-spaces, Indian J. Pure Appl. Math., 25, 309-317 (1994) · Zbl 0811.90147 [15] Ding, X. P., Fixed points, minimax inequalities and equilibria of noncompact abstract economies, Taiwanese J. Math., 2, 25-55 (1998) · Zbl 0911.47055 [16] Ding, X. P., Maximal element theorems in product \(F C\)-spaces and generalized games, J. Math. Anal. Appl., 305, 29-42 (2005) · Zbl 1120.91001 [17] Yannelis, N. C., Maximal elements over noncompact subsets of linear topological spaces, Econom. Lett., 17, 133-136 (1985) · Zbl 1273.91184 [18] Ding, X. P.; Tarafdar, E., Fixed point theorems and existence of equilibrium points of noncompact abstract economics, Nonlinear World, 1, 319-340 (1994) · Zbl 0813.47069 [20] Horvath, C. D., Contractibility and general convexity, J. Math. Anal. Appl., 156, 341-357 (1991) · Zbl 0733.54011 [21] Park, S.; Kim, H., Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl., 209, 551-571 (1997) · Zbl 0873.54048 [22] Ben-El-Mechaiekh, H.; Chebbi, S.; Flornzano, M.; Llinares, J. V., Abstract convexity and fixed points, J. Math. Anal. Appl., 222, 138-150 (1998) · Zbl 0986.54054 [23] Deng, L.; Xia, X., Generalized \(R\)-KKM theorems in topological space and their applications, J. Math. Anal. Appl., 285, 679-690 (2003) · Zbl 1039.54011 [25] Dugundji, J., Topology (1966), Allyn and Bacon Inc. · Zbl 0144.21501 [26] Gale, D.; Mas-Colell, A., On the role of complete, transitive preferences in equilibrium theory, (Schwodiauer, G., Equilibrium and Disequilibrium in Economic Theory (1978), Reider: Reider Pordrecht), 7-14 · Zbl 0377.90011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.