Öziş, Turgut; Yıldırım, Ahmet Application of He’s semi-inverse method to the nonlinear Schrödinger equation. (English) Zbl 1157.65465 Comput. Math. Appl. 54, No. 7-8, 1039-1042 (2007). Summary: A variational theory is established for the nonlinear Schrödinger equation using He’s semi-inverse method. On the basis of the variational principle obtained, a solitary solution is obtained, which is the same as Debnath’s result [L. Debnath, Nonlinear partial differential equations for scientists and engineers. 2nd ed. Boston, MA: Birkhäuser (2005; Zbl 1069.35001)], confirming the validity of our analysis. The method is straightforward and concise. Cited in 24 Documents MSC: 65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems 35Q51 Soliton equations 35Q55 NLS equations (nonlinear Schrödinger equations) Keywords:variational principles; semi-inverse method; Schrödinger equation Citations:Zbl 1069.35001 PDF BibTeX XML Cite \textit{T. Öziş} and \textit{A. Yıldırım}, Comput. Math. Appl. 54, No. 7--8, 1039--1042 (2007; Zbl 1157.65465) Full Text: DOI OpenURL References: [1] Lamb, G.L., Backlund transformations for certain nonlinear evolution equations, J. math. phys., 15, 2157-2165, (1974) [2] Rogers, C.; Ames, W.F., Nonlinear boundary value problems in science and engineering, (1989), Academic Press New York · Zbl 0699.35004 [3] Nozaki, K., Hirota’s method and the singular manifold expansion, J. phys. soc. Japan, 56, 3052-3054, (1987) [4] Novikov, S.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E., Theory of solitons—the inverse methods, (1984), Plenum New York · Zbl 0598.35002 [5] M.J. Ablowitz, H. Segur, Solitons and inverse scattering transform, in: SIAM Studies in Applied Mathematics, vol. 4, Philadelphia, 1981 · Zbl 0472.35002 [6] Demiray, H., An analytical solution to the dissipative nonlinear Schrödinger equation, Appl. math. comput., 145, 179-184, (2003) · Zbl 1037.35077 [7] Abdusalam, H.A., On an improved complex tanh-function method, Int. J. nonlinear sci. numer. simul., 6, 2, 99-106, (2005) · Zbl 1401.35012 [8] Adomian, G., A review of the decomposition method in applied mathematics, J. math. anal. appl., 135, 501-544, (1988) · Zbl 0671.34053 [9] Wazwaz, A.M., A reliable modification of adomian’s decomposition method, Appl. math. comput., 92, 1-7, (1988) [10] El-Sayed, S.M., The decomposition method for studying the klein – gordon equation, Chaos solitons fractals, 18, 5, 1025-1030, (2003) · Zbl 1068.35069 [11] Nayfeh, A.H., Perturbations methods, (2000), John Wiley & Sons, Inc. New York [12] Mickens, R.E., An introduction to nonlinear oscillations, (1981), Cambridge University Press Cambridge · Zbl 0453.70019 [13] He, J.H., Modified lindstedt – poincare methods for some strongly nonlinear oscillations. part I: expansion of a constant, Internat. J. nonlinear mech., 37, 2, 309-314, (2002) · Zbl 1116.34320 [14] He, J.H., Modified lindstedt – poincare methods for some strongly nonlinear oscillations. part II: A new transformation, Internat. J. nonlinear mech., 37, 2, 315-320, (2002) · Zbl 1116.34321 [15] He, J.H., Modified lindstedt – poincare methods for some strongly nonlinear oscillations. part III: double series expansion, Int. J. nonlinear sci. numer. simul., 2, 4, 317-320, (2001) · Zbl 1072.34507 [16] Liu, H.M., Approximate period of nonlinear oscillators with discontinuities by modified lindstedt – poincare method, Chaos solitons fractals, 23, 2, 577-579, (2005) · Zbl 1078.34509 [17] He, J.H., Homotopy perturbation technique, Comput. methods appl. mech. engrg., 178, 3-4, 257-262, (1999) · Zbl 0956.70017 [18] He, J.H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Internat. J. nonlinear mech., 35, 1, 37-43, (2000) · Zbl 1068.74618 [19] El-Shahed, M., Application of he’s homotopy perturbation method to volterra’s integro-differential equation, Int. J. nonlinear sci. numer. simul., 6, 2, 163-168, (2005) · Zbl 1401.65150 [20] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos solitons fractals, 26, 3, 695-700, (2005) · Zbl 1072.35502 [21] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. nonlinear sci. numer. simul., 6, 2, 207-208, (2005) · Zbl 1401.65085 [22] He, J.H., Asymptotology by homotopy perturbation method, Appl. math. comput., 156, 3, 591-596, (2004) · Zbl 1061.65040 [23] He, J.H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. math. comput., 151, 1, 287-292, (2004) · Zbl 1039.65052 [24] He, J.H., Homotopy perturbation method: a new nonlinear analytical technique, Appl. math. comput., 135, 1, 73-79, (2003) · Zbl 1030.34013 [25] Öziş, T.; Yıldırım, A., A note on he’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity, Chaos solitons fractals, 34, 989-991, (2007) [26] He, J.H., Exp-function method for nonlinear wave equations, Chaos solitons fractals, 30, 700-708, (2006) · Zbl 1141.35448 [27] J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Solitons Fractals (in press), doi:10.1016/j.chaos.2006.05.072 · Zbl 1152.35441 [28] Abdou, M.A., The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos solitons fractals, 31, 1, 95-104, (2007) · Zbl 1138.35385 [29] Zhang, Z.; Bi, Q., Bifurcations of a generalized camassa – holm equation, Int. J. nonlinear sci. numer. simul., 67, 1, 81-86, (2005) · Zbl 1401.37057 [30] He, J.H., Limit cycle and bifurcation of nonlinear problems, Chaos solitons fractals, 26, 3, 827-833, (2005) · Zbl 1093.34520 [31] He, J.H., Determination of limit cycles for strongly nonlinear oscillators, Phys. rev. lett., 90, 17, 174301, (2003) [32] Öziş, T.; Yıldırım, A., Determination of limit cycles by modified straightforward expansion for nonlinear oscillators, Chaos solitons fractals, 32, 445-448, (2007) [33] He, J.H., Analytical solution of a nonlinear oscillator by the linearized perturbation technique, Commun. nonlinear sci. numer. simul., 4, 2, 109-113, (1999) · Zbl 0928.34013 [34] He, J.H., Modified straightforward expansion, Meccanica, 34, 4, 287-289, (1999) · Zbl 1002.70019 [35] He, J.H., A new perturbation technique which is also valid for large parameters, J. sound vibr., 229, 5, 1257-1263, (2000) · Zbl 1235.70139 [36] He, J.H., Iteration perturbation method for strongly nonlinear oscillations, J. vibr. control, 7, 5, 631-642, (2001) · Zbl 1015.70019 [37] He, J.H., A modified perturbation technique depending upon an artificial parameter, Meccanica, 35, 4, 299-311, (2000) · Zbl 0986.70016 [38] He, J.H., Non-perturbative methods for strongly nonlinear problems, (2006), Dissertation.de-Verlag im Internet GmbH [39] He, J.H., Some asymptotic methods for strongly nonlinear equations, Internat. J. modern phys. B, 20, 10, 1141-1199, (2006) · Zbl 1102.34039 [40] Debnath, L., Nonlinear partial differential equations for scientists and engineers, (1997), Birkhauser Boston · Zbl 0892.35001 [41] He, J.H., Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. turbo jet-engines, 14, 1, 23-28, (1997) [42] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos solitons fractals, 19, 847-851, (2004) · Zbl 1135.35303 [43] Liu, H.M., Generalized variational principles for ion acoustic plasma waves by he’s semi-inverse method, Chaos solitons fractals, 23, 2, 573-576, (2005) · Zbl 1135.76597 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.