×

Parameter identification of advanced plastic strain-rate potentials and impact on plastic anisotropy prediction. (English) Zbl 1157.74007

Summary: Several strain-rate potentials are examined in order to analyze their ability to model the initial stress and strain anisotropy of several orthotropic sheet materials. Classical quadratic and more advanced non-quadratic strain-rate potentials are investigated in the case of FCC and BCC polycrystals. Different identifications procedures are proposed, which are taking into account the crystallographic texture and/or a set of mechanical test data in the determination of material parameters.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74E15 Crystalline structure
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Arminjon, M.; Bacroix, B.: On plastic potentials for anisotropic metals and their derivation from the texture function, Acta mech. 88, 219-243 (1991) · Zbl 0729.73816
[2] Arminjon, M.; Bacroix, B.; Imbault, D.; Raphanel, J. L.: A fourth-order plastic potential for anisotropic metals and its analytical calculation from the texture function, Acta mech. 107, 33-51 (1994) · Zbl 0848.73005
[3] Bacroix, B., Balan, T., Bouvier, S., Teodosiu, C., 2003. Identification of plastic potentials by inverse method. In: Proc. 6th Int. Esaform Conf., Salerno, Italy, April 28 – 30 2003. pp. 347 – 350.
[4] Banabic, D.: Anisotropy of sheet metals, Formability of metallic materials, 119-172 (2001)
[5] Banabic, D.; Kuwabara, T.; Balan, T.; Comsa, D. S.; Julean, D.: Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. sci. 45, 797-811 (2003) · Zbl 1042.74507
[6] Barlat, F.; Chung, K.: Anisotropic potentials for plastically deformation metals, Modell. simul. Mater. sci. Eng. 1, 403-416 (1993)
[7] Barlat, F., Chung, K., 2005. Anisotropic strain rate potential for aluminium alloy plasticity. In: Proc. 8th Esaform Conf. on Material Forming, Cluj-Napoca, Romania, 27 – 29 April 2005. pp. 415 – 418.
[8] Barlat, F.; Lege, D. J.; Brem, J. C.: A six-component yield function for anisotropic materials, Int. J. Plasticity 7, 693-712 (1991)
[9] Barlat, F.; Chung, K.; Richmond, O.: Strain rate potential for metals and its application to minimum plastic work path calculations, Int. J. Plasticity 9, 51-63 (1993)
[10] Barlat, F.; Chung, K.; Richmond, O.: Anisotropic plastic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming, Metall. mater. Trans. A 25, 1209-1216 (1994)
[11] Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Brem, J. C.; Hayashida, Y.; Lege, D. J.; Matsui, K.; Murtha, S. J.; Hattori, S.; Becker, R. C.; Makosey, S.: Yield function development for aluminium alloy sheets, J. mech. Phys. solids 45, 1727-1763 (1997)
[12] Barlat, F.; Brem, J. C.; Yoon, J. W.; Chung, K.; Dick, R. E.; Lege, D. J.; Pourboghrat, F.; Choi, S. -H.; Chu, E.: Plane stress yield function for aluminum alloy sheet. Part I: Theory, Int. J. Plasticity 19, 1297-1319 (2003) · Zbl 1114.74370
[13] Barlat, F.; Cazacu, O.; &zdot, M.; Yczkowski; Banabic, D.; Yoon, J. W.: Yield surface plasticity and anisotropy, Continuum scale simulation of engineering materials fundamentals – microstructures – process applications, 145-177 (2004)
[14] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E.: Linear transformation-based anisotropic yield functions, Int. J. Plasticity 21, 1009-1039 (2005) · Zbl 1161.74328
[15] Berveiller, M.; Zaoui, A.: An extension of the self-consistent scheme to plastically flowing polycrystals, J. mech. Phys. solids 26, 325-344 (1979) · Zbl 0395.73033
[16] Bishop, J. F. W.; Hill, R.: A theory of the plastic distorsion of a polycrystalline aggregate under combined stress, Philos. mag. 42, 414-427 (1951) · Zbl 0042.22705
[17] Budiansky, B.: Anisotropic plasticity of plane-isotropic sheets, Mechanics of material behavior, 15-29 (1984)
[18] Cazacu, O.; Barlat, F.: Generalization of Drucker’s yield criterion to orthotropy, Math. mech. Solids 6, 613-630 (2001) · Zbl 1128.74303
[19] Cazacu, O.; Barlat, F.: Application of representation theory to describe yielding of anisotropic aluminum alloys, Int. J. Eng. sci. 41, 1367-1385 (2003)
[20] Chung, K.; Richmond, O.: A deformation theory of plasticity based on minimum work paths, Int. J. Plasticity 9, 907 (1993) · Zbl 0793.73034
[21] Chung, K.; Lee, S. Y.; Barlat, F.; Keum, Y. T.; Park, J. M.: Finite element simulation of sheet forming based on a planar anisotropic strain rate potential, Int. J. Plasticity 12, No. 1, 93-115 (1996) · Zbl 0857.73073
[22] Chung, K.; Barlat, F.; Brem, J. C.; Lege, D. J.; Richmond, O.: Blank shape design for a planar anisotropic sheet based on ideal forming design theory and FEM analysis, Int. J. Mech. sci. 39, No. 1, 105-120 (1997) · Zbl 0901.73053
[23] Chung, K.; Barlat, F.; Richmond, O.; Yoon, J. W.: Blank design for a sheet forming application using the anisotropic strain rate potential srp98, The integration of material, process and product design, 213-219 (1999)
[24] Dennis, J. E.; Schnabel, R. B.: Numerical methods for unconstrained optimization and non-linear equations, (1983) · Zbl 0579.65058
[25] Ferron, G.; Makkouk, R.; Morreale, J.: A parametric description of orthotropic plasticity in metal sheets, Int. J. Plasticity 10, 431-449 (1994) · Zbl 0809.73028
[26] Gotoh, M.: A theory of plastic anisotropy based on a yield function of fourth order, Int. J. Mech. sci. 19, 505-520 (1977) · Zbl 0373.73038
[27] Hershey, A. V.: The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals, J. appl. Mech. 30, 241 (1954) · Zbl 0059.18802
[28] Hill, R.: A theory of the yielding and plastic flow of anisotropic metals, Proc. roy. Soc. A 193, 281-297 (1948) · Zbl 0032.08805
[29] Hill, R.: Theoretical plasticity of textured aggregates, Math. proc. Cambr. philos. Soc. 85, 179-191 (1979) · Zbl 0388.73029
[30] Hill, R.: Constitutive dual potentials in classical plasticity, J. mech. Phys. solids 35, 22-33 (1987) · Zbl 0598.73028
[31] Hill, R.: A user-friendly theory of orthotropic plasticity in sheet metals, Int. J. Mech. sci. 35, 19-25 (1993) · Zbl 0825.73174
[32] Hosford, W. F.: A generalised isotropic yield function, J. appl. Mech. 39, 607-619 (1972)
[33] Hu, W.: A novel quadratic yield model to describe the feature of multi-yield-surface of rolled sheet metals, Int. J. Plasticity 23, 2004-2028 (2007) · Zbl 1190.74005
[34] Karafillis, A. P.; Boyce, M. C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. mech. Phys. solids 41, 1859-1886 (1993) · Zbl 0792.73029
[35] Kim, D.; Barlat, F.; Bouvier, S.; Rabahallah, M.; Balan, T.; Chung, K.: Non-quadratic anisotropic potential based on linear transformation of plastic strain rate, Int. J. Plasticity 23, 1380-1399 (2007) · Zbl 1134.74327
[36] Kuwabara, T.; Ikeda, S.; Kuroda, K.: Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. mater. Proc. technol., 517-523 (1998)
[37] Lege, D. J.; Barlat, F.; Brem, J. C.: Characterization and modeling of the mechanical behavior and formability of a 2008-T4 sheet sample, Int. J. Mech. sci. 31, 549-563 (1989)
[38] Pöhlandt, K., Banabic, D., Lange, K., 2002. Equi-biaxial anisotropy coefficient used to describe the plastic behavior of sheet metal. In: Prof. ESAFORM 2002 Conf., Krakow, Poland. pp. 723 – 727.
[39] Rabahallah, M., Bacroix, B., Bouvier, S., Balan, T., 2006. Crystal plasticity based identification of anisotropic strain rate potentials for sheet metal forming simulation. In: Mota Soares, C.A. et al. (Eds.), III European Conf. on Computational Mechanics, Lisbon, Portugal.
[40] Savoie, J.; Macewen, S. R.: A sixth order inverse function for incorporation of crystallographic texture into predictions of properties of aluminium sheet, Textures microstruct., No. 26/27, 495-512 (1996)
[41] Taylor, G. I.: Plastic strain in metals, J. inst. Metals 62, 307-324 (1938)
[42] Van Houtte, P.; Van Bael, A.: Convex plastic potentials of fourth and sixth rank for anisotropic materials, int, J. plasticity 20, 1505-1524 (2004) · Zbl 1066.74518
[43] Van Houtte, P.; Mols, K.; Van Bael, A.; Aernoudt, E.: Application of yield loci calculated from texture data, Textures microstruct. 11, 23-39 (1989)
[44] Van Houtte, P., Van Bael, A., Winters, J., Aernoudt, E., Hall, F., Wang, N., Pillinger, I., Hartley, P., Sturgess, C.E.N., 1992, Modelling of complex forming processes. In: Andersen, S.I., et al. (Eds.), Modelling of Plastic Deformation and Its Engineering Applications, Proc. 13th Risø International Symposium on Materials Science. Risø National Laboratory, Denmark. pp. 161 – 172.
[45] Van Houtte, P., Yerra, S.K., Van Bael, A., 2008. The Facet method: a hierarchical multilevel modelling scheme for anisotropic convex plastic potentials, Int. J. Plasticity, doi:10.1016/j.ijplas.2008.02.001. · Zbl 1419.74262
[46] Vegter, D., 1991. On the plastic behaviour of steel during sheet forming, Ph.D. Thesis, Univ. Twente.
[47] Yoon, J. W.; Song, I. S.; Yang, D. Y.; Chung, K.; Barlat, F.: Finite element method for sheet forming based on an anisotropic strain rate potential and the convected coordinate system, Int. J. Mech. sci. 37, 733-752 (1994) · Zbl 0839.73075
[48] Yu, M. H.: Advances in strength theories for materials under complex stress state in the 20th century, Appl. mech. Rev. 55, 198-218 (2002)
[49] Ziegler, H.: An introduction to thermomechanics, (1977) · Zbl 0358.73001
[50] &zdot, M.; Yczkowski: Anisotropic yield conditions, Handbook of materials behavior models, 155-165 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.