Gideon, F.; Mukuddem-Petersen, J.; Petersen, M. A. Minimizing banking risk in a Lévy process setting. (English) Zbl 1157.91018 J. Appl. Math. 2007, Article ID 32824, 25 p. (2007). The authors apply the quadratic hedging approach developed by H. Föllmer and D. Sondermann [Contributions to mathematical economics, H. G. Debreu, 206–223 (1986; Zbl 0663.90006)] to a situation related to bank deposit withdrawals. Their contribution addresses the problem of determining risk minimizing hedging strategy that may be employed when a bank faces deposit withdrawals with fixed maturities resulting from lump sum deposits. Because of discontinuity associated with the dynamics of bank items, the authors construct a Lévy process-driven stochastic dynamic model that consists of assets and liabilities. The paper generalizes in several aspects the results by C. H. Fouche, J. Mukuddem-Petersen and M. A. Petersen [Appl. Stoch. Models Bus. Ind. 22, No. 1, 41–71 (2006; Zbl 1126.60053)] where the description of bank behavior in a Brownian motion framework was considered. Reviewer: Ryszard Doman (Poznan) Cited in 4 Documents MSC: 91B70 Stochastic models in economics 91B30 Risk theory, insurance (MSC2010) 91B62 Economic growth models Keywords:quadratic hedging; risk-minimizing strategy; Lévy process; Galtchouck-Kunita-Watanabe decomposition Citations:Zbl 0663.90006; Zbl 1126.60053 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] H. Föllmer and D. Sondermann, “Hedging of non-redundant contingent claims,” in Contributions to Mathematical Economics, pp. 205-223, North Holland, Amsterdam, The Netherlands, 1986. · Zbl 0663.90006 [2] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” The Journal of Political Economy, vol. 81, no. 3, pp. 637-654, 1973. · Zbl 1092.91524 · doi:10.1086/260062 [3] R. C. Merton, “An analytic derivation of the cost of deposit insurance and loan guarantees: an application of modern option pricing theory,” Journal of Banking & Finance, vol. 1, no. 1, pp. 3-11, 1977. · doi:10.1016/0378-4266(77)90015-2 [4] J.-P. Decamps, J.-C. Rochet, and B. Roger, “The three pillars of Basel II: optimizing the mix,” Journal of Financial Intermediation, vol. 13, no. 2, pp. 132-155, 2004. · doi:10.1016/j.jfi.2003.06.003 [5] C. H. Fouche, J. Mukuddem-Petersen, and M. A. Petersen, “Continuous-time stochastic modelling of capital adequacy ratios for banks,” Applied Stochastic Models in Business and Industry, vol. 22, no. 1, pp. 41-71, 2006. · Zbl 1126.60053 · doi:10.1002/asmb.609 [6] H. Leland, “Corporate debt value, bond covenants, and optimal capital structure,” The Journal of Finance, vol. 49, no. 4, pp. 1213-1252, 1994. · doi:10.2307/2329184 [7] J.-C. Rochet, “Rebalancing the three pillars of Basel II,” Economic Policy Review, vol. 10, no. 2, pp. 7-25, 2004. [8] M. A. Petersen and J. Mukuddem-Petersen, “Stochastic behaviour of risk-weighted bank assets under the Basel II capital accord,” Applied Financial Economics Letters, vol. 1, no. 3, pp. 133-138, 2005. · doi:10.1080/17446540500101978 [9] J. Mukuddem-Petersen and M. A. Petersen, “Bank management via stochastic optimal control,” Automatica, vol. 42, no. 8, pp. 1395-1406, 2006. · Zbl 1108.93079 · doi:10.1016/j.automatica.2006.03.012 [10] M. A. Petersen, J. Mukuddem-Petersen, I. Schoeman, and A. Tau, “Maximizing banking profit on a random time interval,” Journal of Applied Mathematics, vol. 2007, Article ID 29343, 22 pages, 2007. · Zbl 1151.91071 · doi:10.1155/2007/29343 [11] P. E. Protter, Stochastic Integration and Differential Equations, vol. 21 of Applications of Mathematics (New York), Springer, Berlin, Germany, 2nd edition, 2004. · Zbl 1041.60005 [12] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, vol. 288 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 2nd edition, 2003. · Zbl 1018.60002 [13] J. Bertoin, Lévy Processes, vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK, 1996. · Zbl 0861.60003 [14] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, vol. 68 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, UK, 1999. · Zbl 0973.60001 [15] W. Schoutens, Lévy Processes in Finance: Pricing Financial Derivatives, John Wiley & Sons, Chichester, UK, 2003. [16] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific, River Edge, NJ, USA, 3rd edition, 2004. · Zbl 1060.81004 [17] A. E. Kyprianou, W. Schoutens, and P. Wilmott, Eds., Exotic Option Pricing and Advanced Lévy Models, John Wiley & Sons, Chichester, UK, 2005. · Zbl 1140.91050 [18] F. Delbaen and W. Schachermayer, “A general version of the fundamental theorem of asset pricing,” Mathematische Annalen, vol. 300, no. 1, pp. 463-520, 1994. · Zbl 0865.90014 · doi:10.1007/BF01450498 [19] H. Kunita and S. Watanabe, “On square integrable martingales,” Nagoya Mathematical Journal, vol. 30, pp. 209-245, 1967. · Zbl 0167.46602 [20] A. N. Berger and G. F. Udell, “Did risk-based capital allocate bank credit and cause a “credit crunch” in the United States?,” Journal of Money, Credit and Banking, vol. 26, no. 3, part 2, pp. 585-628, 1994. · doi:10.2307/2077994 [21] F. Castiglionesi, “Financial contagion and the role of the central bank,” Journal of Banking and Finance, vol. 31, no. 1, pp. 81-101, 2007. · doi:10.1016/j.jbankfin.2005.03.025 [22] J. A. Clouse and J. P. Dow Jr., “A computational model of banks/ optimal reserve management policy,” Journal of Economic Dynamics and Control, vol. 26, no. 11, pp. 1787-1814, 2002. · Zbl 1100.91521 · doi:10.1016/S0165-1889(01)00010-0 [23] S. Demiralp and D. Farley, “Declining required reserves, funds rate volatility, and open market operations,” Journal of Banking and Finance, vol. 29, no. 5, pp. 1131-1152, 2005. · doi:10.1016/j.jbankfin.2004.05.030 [24] H. M. Ennis and T. Keister, “Bank runs and investment decisions revisited,” Journal of Monetary Economics, vol. 53, no. 2, pp. 217-232, 2006. · doi:10.1016/j.jmoneco.2004.09.006 [25] E. Fernández, “Distorting taxes and interest on reserves,” Economic Modelling, vol. 22, no. 6, pp. 975-1000, 2005. · doi:10.1016/j.econmod.2005.06.006 [26] W. Whitesell, “Interest rate corridors and reserves,” Journal of Monetary Economics, vol. 53, no. 6, pp. 1177-1195, 2006. · doi:10.1016/j.jmoneco.2005.03.013 [27] T. Chan, “Pricing contingent claims on stocks driven by Lévy processes,” The Annals of Applied Probability, vol. 9, no. 2, pp. 504-528, 1999. · Zbl 1054.91033 · doi:10.1214/aoap/1029962753 [28] N. Bouleau and D. Lamberton, “Residual risks and hedging strategies in Markovian markets,” Stochastic Processes and Their Applications, vol. 33, no. 1, pp. 131-150, 1989. · Zbl 0743.60069 · doi:10.1016/0304-4149(89)90071-9 [29] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004. · Zbl 1052.91043 · doi:10.1201/9780203485217 [30] Basel Committee on Banking Supervision, “Second Consultative Paper,” 2001, Bank for International Settlements, http://www.bis.org/bcbs/bcbscp2.htm. [31] Basel Committee on Banking Supervision, “International Convergence of Capital Measurement and Capital Standards; A Revised Framework,” 2004, Bank for International Settlements, http://www.bis.org/publ/bcbs107.pdf. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.