zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup. (English) Zbl 1157.93006
Summary: We study the controllability problem for a system governed by a semilinear differential inclusion in a Banach space not assuming that the semigroup generated by the linear part of inclusion is compact. Instead we suppose that the multivalued nonlinearity satisfies the regularity condition expressed in terms of the Hausdorff measure of noncompactness. It allows us to apply the topological degree theory for condensing operators and to obtain the controllability results for both upper Carathéodory and almost lower semicontinuous types of nonlinearity. As application we consider the controllability for a system governed by a perturbed wave equation.

MSC:
93B05Controllability
34A60Differential inclusions
34H05ODE in connection with control problems
34G25Evolution inclusions
47H04Set-valued operators
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
49J24Optimal control problems with differential inclusions (existence) (MSC2000)
WorldCat.org
Full Text: DOI
References:
[1] Akhmerov, R. R.; Kamenskii, M. I.; Potapov, A. S.; Rodkina, A. E.; Sadovskii, B. N.: Measures of noncompactness and condensing operators. (1992)
[2] Balachandran, K.; Dauer, J. P.: Controllability of nonlinear systems in Banach spaces: A survey. J. optim. Theory appl. 115, No. 1, 7-28 (2002) · Zbl 1023.93010
[3] Benchohra, M.; Górniewicz, L.; Ntouyas, S. K.: Controllability on infinite time horizon for first and second order functional differential inclusions in Banach spaces. Discuss. math. Differ. incl. Control optim. 21, No. 2, 261-282 (2001) · Zbl 1020.93004
[4] Benchohra, M.; Górniewicz, L.; Ntouyas, S. K.: Controllability of neutral functional differential and integrodifferential inclusions in Banach spaces with nonlocal conditions. Nonlinear anal. 7, No. 1, 39-54 (2002) · Zbl 1040.93005
[5] Benchohra, M.; Górniewicz, L.; Ntouyas, S. K.; Ouahab, A.: Controllability results for impulsive functional differential inclusions. Rep. math. Phys. 54, No. 2, 211-228 (2004) · Zbl 1130.93310
[6] Benchohra, M.; Ntouyas, S. K.: Controllability for functional differential and integrodifferential inclusions in Banach spaces. J. optim. Theory appl. 113, No. 3, 449-472 (2002) · Zbl 1020.93002
[7] Benchohra, M.; Ouahab, A.: Controllability results for functional semilinear differential inclusions in Fréchet spaces. Nonlinear anal. 61, No. 3, 405-423 (2005) · Zbl 1086.34062
[8] Borisovich, Yu.G.; Gelman, B. D.; Myshkis, A. D.; Obuhovskii, V. V.: Topological methods in the theory of fixed points of multivalued mappings. Uspekhi mat. Nauk 35 (1), No. 211, 59-126 (1980)
[9] Borisovich, Yu.G.; Gelman, B. D.; Myshkis, A. D.; Obukhovskii, V. V.: Introduction to theory of multivalued maps and differential inclusions. (2005)
[10] Borisovich, Yu.G.; Obukhovskii, V. V.: On an optimization problem for control systems of parabolic type. Tr. mat. Inst. Steklov 211 (1995)
[11] Chang, Y. K.; Li, W. T.: Controllability of functional integro-differential inclusions with an unbounded delay. J. optim. Theory appl. 132, No. 1, 125-142 (2007) · Zbl 1127.93014
[12] Chang, Y. K.; Li, W. T.; Nieto, J. J.: Controllability of evolution differential inclusions in Banach spaces. Nonlinear anal. 67, No. 2, 623-632 (2007) · Zbl 1128.93005
[13] Deimling, K.: Multivalued differential equations. De gruyter series in nonlinear analysis and applications 1 (1992) · Zbl 0760.34002
[14] Engel, K. -J.; Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate texts in mathematics 194 (2000)
[15] Górniewicz, L.; Ntouyas, S. K.; O’regan, D.: Controllability of semilinear differential equations and inclusions via semigroup theory in Banach spaces. Rep. math. Phys. 56, No. 3, 437-470 (2005) · Zbl 1185.93016
[16] Górniewicz, L.; Ntouyas, S. K.; O’regan, D.: Controllability results for first and second order evolution inclusions with nonlocal conditions. Ann. polon. Math. 89, No. 1, 65-101 (2006) · Zbl 1104.93015
[17] Górniewicz, L.; Ntouyas, S. K.; O’regan, D.: Existence and controllability results for first- and second-order functional semilinear differential inclusions with nonlocal conditions. Numer. funct. Anal. optim. 28, No. 1-2, 53-82 (2007) · Zbl 1123.34061
[18] Górniewicz, L.; Ntouyas, S. K.; O’regan, D.: Controllability of evolution inclusions in Banach spaces with nonlocal conditions. Nonlinear anal. 12, No. 1, 103-117 (2007) · Zbl 05305045
[19] Kamenskii, M.; Obukhovskii, V.; Zecca, P.: Condensing multivalued maps and semilinear differential inclusions in Banach spaces. De gruyter series in nonlinear analysis and applications 7 (2001) · Zbl 0988.34001
[20] Liu, B.: Controllability of impulsive neutral functional differential inclusions with infinite delay. Nonlinear anal. 60, No. 8, 1533-1552 (2005) · Zbl 1079.93008
[21] Obukhovskii, V. V.: On some fixed point principles for multivalued condensing operators. Trudy mat. Fac. voronezh univ. 4, 70-79 (1971)
[22] Quinn, M. D.; Carmichael, N.: An approach to nonlinear control problems using fixed-point methods, degree theory and pseudo-inverses. Numer. funct. Anal. optim. 7, No. 2--3, 197-219 (1984/85) · Zbl 0563.93013
[23] Triggiani, R.: A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control optim. 15, No. 3, 407-411 (1977) · Zbl 0354.93014
[24] Triggiani, R.: Addendum: ”A note on the lack of exact controllability for mild solutions in Banach spaces”. SIAM J. Control optim. 18, No. 1, 98-99 (1980) · Zbl 0426.93013