zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$H_{\infty }$ and bibo stabilization of delay systems of neutral type. (English) Zbl 1157.93367
Summary: Frequency-domain tests for the $H_{\infty }$ and BIBO stability of large classes of delay systems of neutral type are derived. The results are applied to discuss the stabilizability of such systems by finite-dimensional controllers.

93C23Systems governed by functional-differential equations
93D25Input-output approaches to stability of control systems
Full Text: DOI
[1] Bellman, R.; Cooke, K. L.: Differential-difference equations. (1963) · Zbl 0105.06402
[2] V. Blondel, Simultaneous Stabilization of Linear Systems, Lecture Notes in Control and Information Sciences, Vol. 191, Springer, London, 1994.
[3] Bonnet, C.; Partington, J. R.: Bezout factors and L1-optimal controllers for delay systems using a two-parameter compensator scheme. IEEE trans. Automat. control 44, 1512-1521 (1999) · Zbl 0959.93052
[4] Bonnet, C.; Partington, J. R.: Analysis of fractional delay systems of retarded and neutral type. Automatica 38, 1133-1138 (2002) · Zbl 1007.93065
[5] Curtain, R. F.; Glover, K.: Robust stabilization of infinite-dimensional systems by finite-dimensional controllers. Systems control lett. 7, No. 1, 41-47 (1986) · Zbl 0601.93044
[6] R.F. Curtain, H. Zwart, An Introduction to Infinite-dimensional Linear Systems Theory, Texts in Applied Mathematics, Vol. 21, Springer, New York, 1995. · Zbl 0839.93001
[7] Desoer, C. A.; Vidyasagar, M.: Feedback systems: input--output properties. (1975) · Zbl 0327.93009
[8] Georgiou, T. T.; Smith, M. C.: Graphs, causality, and stabilizability: linear, shift-invariant systems on L2[0,\infty). Math. control signals systems 6, 195-223 (1993) · Zbl 0796.93004
[9] Loiseau, J. -J; Cardelli, M.; Dusser, X.: Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable. IMA J. Math. control inform. 19, 217-227 (2002) · Zbl 1001.93072
[10] Marshall, J. E.; Górecki, H.; Walton, K.; Korytowski, A.: Time-delay systems: stability and performance criteria with applications. (1992) · Zbl 0769.93001
[11] O’connor, D. A.; Tarn, T. J.: On stabilization by state feedback for neutral differential-difference equations. IEEE trans. Automat. control 28, No. 5, 615-618 (1983) · Zbl 0527.93049
[12] Partington, J. R.; Glover, K.: Robust stabilization of delay systems by approximation of coprime factors. Systems control lett. 14, No. 4, 325-331 (1990) · Zbl 0699.93078
[13] Partington, J. R.; Mäkilä, P. M.: Worst-case analysis of identification--BIBO robustness for closed-loop data. IEEE trans. Automat. control 39, No. 10, 2171-2176 (1994) · Zbl 0925.93149
[14] A. Quadrat, Une approche de la stabilisation par l’analyse algébrique: III. Sur une structure générale des contrôleurs stabilisants basée sur le rang stable, Conférence Internationale Francophone d’Automatique (CIFA), Nantes, France, 2002.
[15] Treil, S.: The stable rank of the algebra H$\infty $equals 1. J. funct. Anal. 109, No. 1, 130-154 (1992) · Zbl 0784.46037