×

Robust \(h_{\infty }\) control for uncertain discrete-time systems with time-varying delays via exponential output feedback controllers. (English) Zbl 1157.93371

Summary: This paper considers the problem of robust \(H_{\infty }\) control for uncertain discrete systems with time-varying delays. The system under consideration is subject to time-varying norm-bounded parameter uncertainties in both the state and measured output matrices. Attention is focused on the design of a full-order exponential stable dynamic output feedback controller which guarantees the exponential stability of the closed-loop system and reduces the effect of the disturbance input on the controlled output to a prescribed level for all admissible uncertainties. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of this problem is presented, which is dependent on the size of the delay. When this LMI is feasible, the explicit expression of the desired output feedback controller is also given. Finally, an example is provided to demonstrate the effectiveness of the proposed approach.

MSC:

93B36 \(H^\infty\)-control
93C23 Control/observation systems governed by functional-differential equations
93C55 Discrete-time control/observation systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Åström, K. J.; Wittenmark, B., Computer Controlled Systems: Theory and Design (1984), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0217.57903
[2] Boukas, E. K.; Liu, Z. K., Robust \(H_∞\) control of discrete-time Markovian jump linear systems with mode-dependent time-delays, IEEE Trans. Automat. Control, 46, 1918-1924 (2001) · Zbl 1005.93050
[3] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1994), SIAM Studies in Applied Mathematics, SIAM: SIAM Studies in Applied Mathematics, SIAM Philadelphia · Zbl 0816.93004
[4] Choi, H. H.; Chung, M. J., Observer-based \(H_∞\) controller design for state delayed linear systems, Automatica, 32, 1073-1075 (1996) · Zbl 0850.93215
[5] Choi, H. H.; Chung, M. J., An LMI approach to \(H_∞\) controller design for linear time-delay systems, Automatica, 33, 737-739 (1997) · Zbl 0875.93104
[6] de Souza, C. E.; Li, X., Delay-dependent robust \(H_∞\) control of uncertain linear state-delayed systems, Automatica, 35, 1313-1321 (1999) · Zbl 1041.93515
[7] Esfahani, S. H.; Petersen, I. R., An LMI approach to output-feedback-guaranteed cost control for uncertain time-delay systems, Internat. J. Robust Nonlinear Control, 10, 157-174 (2000) · Zbl 0951.93032
[8] Fridman, E.; Shaked, U., A descriptor system approach to \(H_∞\) control of linear time-delay systems, IEEE Trans. Automat. Control, 47, 253-270 (2002) · Zbl 1364.93209
[9] Fridman, E.; Shaked, U., \(H_∞\) control of linear state-delay descriptor systemsan LMI approach, Linear Algebra Appl., 351/352, 271-302 (2002) · Zbl 1006.93021
[10] Fridman, E.; Shaked, U.; Xie, L., Robust \(H_∞\) filtering of linear systems with time-varying delay, IEEE Trans. Automat. Control, 48, 159-165 (2003) · Zbl 1364.93797
[11] Gahinet, P.; Apkarian, P., A linear matrix inequality approach to \(H_∞\) control, Internat. J. Robust Nonlinear Control, 4, 421-448 (1994) · Zbl 0808.93024
[12] Gorecki, H. S.; Fuska, P.; Grabowski, S.; Korytowski, A., Analysis and Synthesis of Time Delay Systems (1989), Wiley: Wiley New York · Zbl 0695.93002
[13] Hale, J. K., Theory of Functional Differential Equations (1977), Springer: Springer New York · Zbl 0425.34048
[14] Jeung, E. T.; Kim, J. H.; Park, H. B., \(H_∞\)-output feedback controller design for linear systems with time-varying delayed state, IEEE Trans. Automat. Control, 43, 971-974 (1998) · Zbl 0952.93032
[15] Kapila, V.; Haddad, W. M., Memoryless \(H_∞\) controllers for discrete-time systems with time delay, Automatica, 34, 1141-1144 (1998) · Zbl 0934.93023
[16] Kolmanovskii, V. B.; Myshkis, A. D., Applied Theory of Functional Differential Equations (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0907.39012
[17] Lee, J. H.; Kim, S. W.; Kwon, W. H., Memoryless \(H_∞\) controllers for state delayed systems, IEEE Trans. Automat. Control, 39, 159-162 (1994) · Zbl 0796.93026
[18] Li, X.; de Souza, C. E., Criteria for robust stability and stabilization of uncertain linear systems with state-delay, Automatica, 33, 1657-1662 (1997) · Zbl 1422.93151
[19] Mahmoud, M. S., Robust \(H_∞\) control of discrete systems with uncertain parameters and unknown delays, Automatica, 36, 627-635 (2000) · Zbl 0982.93032
[20] Song, S.-H.; Kim, J.-K., \(H_∞\) control of discrete-time linear systems with norm-bounded uncertainties and time delay in state, Automatica, 34, 137-139 (1998) · Zbl 0904.93011
[21] Trinh, H.; Aldeen, M., A memoryless state observer for discrete time-delay systems, IEEE Trans. Automat. Control, 42, 1572-1577 (1997) · Zbl 1034.93508
[22] Wang, Y.; Xie, L.; de Souza, C. E., Robust control of a class of uncertain nonlinear systems, Systems Control Lett., 19, 139-149 (1992) · Zbl 0765.93015
[23] Xu, S.; Chen, T., Robust \(H_∞\) control for uncertain stochastic systems with state delay, IEEE Trans. Automat. Control, 47, 2089-2094 (2002) · Zbl 1364.93755
[24] Xu, S.; Lam, J.; Yang, C., \(H_∞\) and positive real control for linear neutral delay systems, IEEE Trans. Automat. Control, 46, 1321-1326 (2001) · Zbl 1008.93033
[25] Xu, S.; Lam, J.; Yang, C., Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay, Systems Control Lett., 43, 77-84 (2001) · Zbl 0974.93052
[26] Xu, S.; Lam, J.; Yang, C., Robust \(H_∞\) control for discrete singular systems with state delay and parameter uncertainty, Dyn. Continuous Discrete Impulsive Systems, 9, 539-554 (2002) · Zbl 1039.93060
[27] Xu, S.; Van Dooren, P.; Stefan, R.; Lam, J., Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47, 1122-1128 (2002) · Zbl 1364.93723
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.