×

zbMATH — the first resource for mathematics

Output regulation with nonlinear internal models. (English) Zbl 1157.93412
Summary: This paper addresses the problem of semi-global nonlinear output regulation for a class of nonlinear systems possessing a nonlinear internal model. It is shown that, under appropriate (and verifiable) hypotheses, the standard assumption that the feed-forward inputs needed to keep the zero error manifold invariant satisfy a linear differential equation can be weakened.

MSC:
93C15 Control/observation systems governed by ordinary differential equations
93D25 Input-output approaches in control theory
93D30 Lyapunov and storage functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Byrnes, C.I.; Delli Priscoli, F.; Isidori, A.; Kang, W., Structurally stable output regulation of nonlinear systems, Automatica, 33, 369-385, (1997) · Zbl 0873.93043
[2] F. Delli Priscoli, Robust tracking for polynomial plants, in: Proceedings of Second European Control Conference, Groningen, The Netherlands, 1993, pp. 369-373.
[3] Huang, J., Asymptotic tracking and disturbance rejection in uncertain nonlinear systems, IEEE trans. automat. control, 40, 1118-1122, (1995) · Zbl 0829.93027
[4] Huang, J.; Lin, C.F., On a robust nonlinear multivariable servomechanism problem, IEEE trans. automat. control, 39, 1510-1513, (1994) · Zbl 0800.93290
[5] Isidori, A., Nonlinear control system, (1995), Springer New York
[6] Isidori, A., A remark on the problem of semiglobal nonlinear output regulation, IEEE trans. automat. control, 42, 1734-1738, (1997) · Zbl 0897.93055
[7] Isidori, A.; Byrnes, C.I., Output regulation of nonlinear system, IEEE trans. automat. control, 35, 131-140, (1990) · Zbl 0704.93034
[8] Khalil, H.K., Robust servomechanism output feedback controllers for feedback linearizable systems, Automatica, 30, 1587-1599, (1994) · Zbl 0816.93032
[9] Khalil, H.K.; Esfandiari, F., Semiglobal stabilization of a class of nonlinear systems using output feedback, IEEE trans. automat. control, 38, 1412-1415, (1993) · Zbl 0787.93079
[10] Krener, A.J.; Isidori, A., Linearization by output injection and nonlinear observers, Syst. control lett, 3, 47-52, (1983) · Zbl 0524.93030
[11] Nikiforov, V.O., Adaptive non-linear tracking with complete compensation of unknown disturbances, European J. control, 4, 132-139, (1998) · Zbl 1047.93550
[12] Serrani, A.; Isidori, A.; Marconi, L., Nonlinear output regulation with frequency adaptation, IEEE trans. automat. control, 46, 1178-1194, (2001) · Zbl 1057.93053
[13] Teel, A., A nonlinear small gain theorem for the analysis of control systems with saturations, IEEE trans. automat. control, 41, 1256-1270, (1996) · Zbl 0863.93073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.