×

zbMATH — the first resource for mathematics

Non-abelian extensions of topological Lie algebras. (English) Zbl 1158.17308
Summary: In this article we extend and adapt several results on extensions of Lie algebras to topological Lie algebras over topological fields of characteristic zero. In particular, we describe the set of equivalence classes of extensions of the Lie algebra \(\mathfrak g\) by the Lie algebra \(\mathfrak n\) as a disjoint union of affine spaces with translation group \(H^2(\mathfrak g, \mathfrak z(\mathfrak n))_{[S]}\), where \([S]\) denotes the equivalence class of the continuous outer action \(S\colon \mathfrak g \to \text{der}\;\mathfrak n\). We also discuss topological crossed modules and explain how they are related to extensions of Lie algebras by showing that any continuous outer action gives rise to a crossed module whose obstruction class in \(H^3(\mathfrak g, \mathfrak z(\mathfrak n))_S\) is the characteristic class of the corresponding crossed module. The correspondence between crossed modules and extensions further leads to a description of \(\mathfrak n\)-extensions of \(\mathfrak g\) in terms of certain \(\mathfrak z(\mathfrak n)\)-extensions of a Lie algebra which is an extension of \(\mathfrak g\) by \(\mathfrak n/\mathfrak z(\mathfrak n)\). We discuss several types of examples, describe applications to Lie algebras of vector fields on principal bundles, and in two appendices we describe the set of automorphisms and derivations of topological Lie algebra extensions.

MSC:
17B55 Homological methods in Lie (super)algebras
16W80 Topological and ordered rings and modules
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alekseevsky D., J. Lie Theory 15 pp 125– (2005)
[2] Alekseevsky D., Extensions of Lie algebras · Zbl 1098.17014
[3] Berline N., Heat Kernels and Dirac Operators (2004)
[4] Brylinski J.-L., Progr. in Math., 107, in: Loop Spaces, Characteristic Classes and Geometric Quantization (1993) · Zbl 0823.55002
[5] Chevalley C., Trans. Amer. Math. Soc. 63 pp 1– (1984)
[6] Farmelo G., It Must Be Beautiful. Great Equations of Modern Science (2003) · Zbl 1032.00011
[7] DOI: 10.4153/CJM-1953-054-8 · Zbl 0051.02303 · doi:10.4153/CJM-1953-054-8
[8] DOI: 10.2307/2372712 · Zbl 0055.26601 · doi:10.2307/2372712
[9] DOI: 10.2307/2372650 · Zbl 0057.27204 · doi:10.2307/2372650
[10] DOI: 10.1090/S0002-9947-1953-0052438-8 · doi:10.1090/S0002-9947-1953-0052438-8
[11] DOI: 10.2307/1969740 · Zbl 0053.01402 · doi:10.2307/1969740
[12] Kolář I., Natural Operations in Differential Geometry (1993) · Zbl 0782.53013
[13] Lecomte P., Bull Soc. Math. Fr. 13 pp 259– (1985)
[14] DOI: 10.1007/BF02108296 · Zbl 0824.58024 · doi:10.1007/BF02108296
[15] MacLane S., Homological Algebra (1963)
[16] Mori M., J. Math. Soc. 5 pp 171– (1953)
[17] Neeb K.-H., Annales de l’Inst. Fourier 52 pp 1365– (2002)
[18] Neeb K.-H., Travaux Math. 15 pp 69– (2004)
[19] DOI: 10.1016/j.jfa.2004.02.012 · Zbl 1067.53065 · doi:10.1016/j.jfa.2004.02.012
[20] Robinson D. J. S., Lecture Notes in Pure and Applied Math 91, in: Algebra and its Applications International Symp. on Algebra and Its Applications in New Delhi pp 163– (1984)
[21] Shukla U., J. Math. Soc. 18 pp 275– (1966) · Zbl 0144.27201 · doi:10.2969/jmsj/01830275
[22] Wagemann F., Comm. in Algebra · Zbl 1118.17004
[23] Weibel C. A., Cambridge studies in advanced math. 38, in: An Introduction to Homological Algebra (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.